首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found that EMA-1, a monoclonal antibody originally raised against mouse embryonal carcinoma (Nulli SCC1) cells (Hahnel & Eddy, 1982), also labels chick primordial germ cells (PGCs). We have used this antibody in immunohistological studies to follow the development of PGCs in the chick embryo from the time of their initial appearance beneath the epiblast, through their migratory phase and subsequent colonization of the germinal epithelium. During hypoblast formation, individual EMA-1-labelled cells appeared to separate from the basal surface of the epiblast and enter the blastocoel, coincident with the appearance of morphologically identifiable PGCs in this same area. EMA-1 continued to label germ cells until the initiation of gametogenesis in each sex; specifically, labelling was absent by 7-8 days of incubation in females and started to decrease at 11 days of incubation in males. There was a recurrence of the epitope on oogonia at 15 days of incubation, but not on spermatogonia during the remainder of development through hatching. These observations are consistent with an epiblast origin for the avian germ line, and are strikingly similar to those reported for the early mouse embryo using the same antibody (Hahnel & Eddy, 1986).  相似文献   

2.
3.
In mouse embryos at mid-gestation, primordial germ cells (PGCs) undergo licensing to become gametogenesis-competent cells (GCCs), gaining the capacity for meiotic initiation and sexual differentiation. GCCs then initiate either oogenesis or spermatogenesis in response to gonadal cues. Germ cell licensing has been considered to be a cell-autonomous and gonad-independent event, based on observations that some PGCs, having migrated not to the gonad but to the adrenal gland, nonetheless enter meiosis in a time frame parallel to ovarian germ cells -- and do so regardless of the sex of the embryo. Here we test the hypothesis that germ cell licensing is cell-autonomous by examining the fate of PGCs in Gata4 conditional mutant (Gata4 cKO) mouse embryos. Gata4, which is expressed only in somatic cells, is known to be required for genital ridge initiation. PGCs in Gata4 cKO mutants migrated to the area where the genital ridge, the precursor of the gonad, would ordinarily be formed. However, these germ cells did not undergo licensing and instead retained characteristics of PGCs. Our results indicate that licensing is not purely cell-autonomous but is induced by the somatic genital ridge.  相似文献   

4.
Whether all descendants of germline founder cells inheriting the germ plasm can migrate correctly to the genital ridges and differentiate into primordial germ cells (PGCs) at tadpole stage has not been elucidated in Xenopus. We investigated precisely the location of descendant cells, presumptive primordial germ cells (pPGCs) and PGCs, in embryos at stages 23-48 by whole-mount in situ hybridization with the antisense probe for Xpat RNA specific to pPGCs and whole-mount immunostaining with the 2L-13 antibody specific to Xenopus Vasa protein in PGCs. Small numbers of pPGCs and PGCs, which were positively stained with the probe and the antibody, respectively, were observed in ectopic locations in a significant number of embryos at those stages. A few of the ectopic PGCs in tadpoles at stages 44-47 were positive in TdT-mediated dUTP digoxigenin nick end labeling (TUNEL) staining. By contrast, pPGCs in the embryos until stage 40, irrespective of their location and PGCs in the genital ridges of the tadpoles at stages 43-48 were negative in TUNEL staining. Therefore, it is evident that a portion of the descendants of germline founder cells cannot migrate correctly to the genital ridges, and that a few ectopic PGCs are eliminated by apoptosis or necrosis at tadpole stages.  相似文献   

5.
 Instrumental for studies investigating the development of germ cells, and especially the separation of the germline in the early embryo, are molecular markers which reliably label germ cells and with which regulative factors of germ cell development may be analyzed. Here, we describe the monoclonal antibody PG-2, which is highly specific for the germ cells of the rabbit embryo and labels the perimitochondrial cytoplasm, as demonstrated by immunogold-silver staining. Identical expression patterns are found in germ cells of either sex from early organogenesis at 10 days post-conception (d.p.c.), when the germ cells leave the hindgut epithelium and settle in the gonadal anlage as primordial germ cells (PGCs), until the time immediately prior to birth (30 d.p.c.), when germ cells are either in their oogonial or prospermatogonial state. The antibody is the first to recognize specifically a cytoplasmic epitope in germ cells of a higher vertebrate and may well recognize the mammalian equivalent of the germ plasm found in inverteb-rates and lower vertebrates. The antibody can be used for early identification of PGCs and may be of help in the elucidation of mammalian germ cell development towards the gonial stages of spermatogenesis and oogenesis. Accepted: 30 May 1997  相似文献   

6.
7.
Chicken primordial germ cells (PGCs) differentiate into germ cells in gonads. Because PGCs can be cloned and cultured maintaining germline competency, they are a good means of modifing the chicken genome, but the efficiency of plasmid transfection into PGCs is very low. In this study, I attempted to improve the efficiency of PGC transfection. Cultured PGCs were purified by Percoll density gradient centrifugation, and were then transfected with plasmid DNA. For transient transfection, the transfection efficiency increased more than 7-fold by the Percoll method. The efficiency of stable transfection of PGCs also increased significantly. The stable transfectants that were isolated by this method accumulated in the developing gonads after microinjection into bloodstream of chick embryos, indicating that gene transfection by Percoll purification did not alter the function of PGCs in vivo.  相似文献   

8.
Germ plasm is found in germ‐line cells of Xenopus and thought to include the determinant of primordial germ cells (PGCs). As mitochondria is abundant in germ plasm, vital staining of mitochondria was used to analyze the movement and function of germ plasm; however, its application was limited in early cleavage embryos. We made transgenic Xenopus, harboring enhanced green fluorescent protein (EGFP) fused to the mitochondria transport signal (Dria‐line). Germ plasm with EGFP‐labeled mitochondria was clearly distinguishable from the other cytoplasm, and retained mostly during one generation of germ‐line cells in Dria‐line females. Using the Dria‐line, we show that germ plasm is reorganized from near the cell membrane to the perinuclear space at St. 9, dependent on the microtubule system.  相似文献   

9.
10.
In order to determine whether or not tadpoles that once lacked primordial germ cells (PGCs) in the genital ridges and dorsal mesentery as a result of ultraviolet (UV) irradiation subsequently contained germ cells at more advanced stages of larval development, the numbers of presumptive PGCs or PGCs were carefully examined in Xenopus tadpoles at Nieuwkoop and Faber's stage 35/36–52 that developed normally from UV-irradiated eggs.
No late-appearing germ cells were observed in almost all the UV-irradiated tadpoles examined at stages 49–52. This same population had completely lacked PGCs at about stage 46. Moreover, presumptive PGCs (pPGCs) or cells with granular cytoplasm that reacted with a monoclonal antibody specific for the germ plasm of cleaving Xenopus eggs stayed in the central part of the endoderm cell mass in the irradiated tadpoles at stage 35/36, when the majority of those cells were located in the dorsal part of the endoderm in unirradiated controls. Furthermore, in the irradiated embryos pPGCs were demonstrated to decrease in number with development and eventually to disappear in tadpoles at about stage 40. The results strongly suggest that UV irradiation under the conditions used here totally eliminated germline cells from the irradiated animals.  相似文献   

11.
Primordial germ cells (PGCs) are the precursors to the adult germline stem cells that are set aside early during embryogenesis and specified through the inheritance of the germ plasm, which contains the mRNAs and proteins that function as the germline fate determinants. In Drosophila melanogaster, formation of the PGCs requires the microtubule and actin cytoskeletal networks to actively segregate the germ plasm from the soma and physically construct the pole buds (PBs) that protrude from the posterior cortex. Of emerging importance is the central role of centrosomes in the coordination of microtubule dynamics and actin organization to promote PGC development. We previously identified a requirement for the centrosome protein Centrosomin (Cnn) in PGC formation. Cnn interacts directly with Pericentrin‐like protein (PLP) to form a centrosome scaffold structure required for pericentriolar material recruitment and organization. In this study, we identify a role for PLP at several discrete steps during PGC development. We find PLP functions in segregating the germ plasm from the soma by regulating microtubule organization and centrosome separation. These activities further contribute to promoting PB protrusion and facilitating the distribution of germ plasm in proliferating PGCs.  相似文献   

12.
In culture, mouse primordial germ cells (PGCs) proliferate and undergo growth arrest with a time course similar to thatin vivo.It is unclear whether this behavior is regulated autonomously or by coexisting somatic cells. We performed mixed culture experiments using PGCs from 8.5- and 11.5-d.p.c. embryos and found no interaction between the PGCs and somatic cells at the two stages. Next, we carried out clonal culture of PGCs and examined the proliferation of and morphological change in individual clones. Such clonal culture did not reveal any subpopulation of PGCs with an increased growth rate or less differentiated characteristics, which might have been suggested by formation of the embryonic germ cell lines. Our results suggest that there is an autonomous regulation of growth and cell shape change in PGCs which occur as stochastical events but are not strictly timed by the number of cell divisions.  相似文献   

13.
Several strategies for the assessment of reproductive toxicity of chemical compounds has have been proposed. In the present work, we devised experimental in vitro assays to test the effect of potential toxicants on proliferating primordial germ cells (PGCs) in vitro using recently developed methods for isolation and culture of mouse PGCs. Primordial germ cells are the embryonic precursors of gametes of the adult that carry the genome from generation to generation. Any damage or mutations caused to these cells by potential toxicants might impair normal reproduction and be transmitted to next generation. Three representative compounds, N-ethyl-N-nitrosourea (ENU), adriamycin (ADR), and mono-(2-ethylhexyl)phthalate (MEHP), toxic to different targets and known to affect germ cell development and impair fertility, were tested on PGCs in culture using three different experimental protocols. Survival and growth of PGCs and their ability to adhere to cell monolayers, were taken as endpoints for drug effects. For each compound, sublethal and acute toxicity doses were determined. In addition, information about the mechanisms of action of these compounds on PGCs was obtained. Whereas the effects of ENU and ADR on PGCs were attributable to growth inhibition and apoptosis induction, MEHP affected PGC adhesion to somatic cells without significantly altering their growth and survival. The results of our in vitro tests were not always exactly predictive of the effects of the tested compounds on PGCs in vivo, determined in parallel experiments in which pregnant mice were exposed to the same compounds. Nevertheless, they can provide information on the sensitivity of PGCs to the direct action of drugs or the mechanisms of action of such agents. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Tissue nonspecific alkaline phosphatase (TNAP), the product of theAkp2locus, is expressed in mouse primordial germ cells (PGC) for an extensive period during embryogenesis. Mice with theAkp2tm1Sormutant allele of TNAP expresslacZ(β-galactosidase; β-gal) under control of theAkp2locus. PGCs were purified fromAkp2tm1Sorembryos using fluorescence activated cell sorting of β-gal expressing cells (FACS-gal). Analysis of the purified cells by alkaline phosphatase staining and immunocytochemistry with anti-c-kitantibody demonstrated that highly (98%) purified PGCs can be isolated using this method. This technique will facilitate experiments that require highly purified preparations of PGCs including cell culture and gene expression analyses.  相似文献   

15.

Background

Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.

Methodology and Principal Findings

Here we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.

Conclusions/Significance

We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.  相似文献   

16.
A procedure is described in which large early spermatogonia were isolated from carp testes and purified from an initial 4–5% recovery up to 60–70% using equilibrium density centrifugation on a continuous Percoll gradient. Mice were immunized with the spermatogonia via the intrasplenic route. Six hybridoma cultures, producing monoclonal antibodies (MAbs) reacting selectively with germ cells, were selected and further analysed. Reactivity with five of these MAbs was observed on primordial germ cells (PGCs) in the developing indifferent gonads at the onset of proliferation, i.e. the age of 7 weeks. One MAb, encoded WCG 6, appeared to define a new surface marker on PGCs being gradually expressed on the surface membrane between the age of 2 and 4 weeks, concomitantly with an increase in size of these mitotically silent cells. The reactivity of germ cells with five of the MAbs disappeared completely (WCG 7, 12, 15, 21) or nearly completely (WCG 6) during spermatogenesis, providing a striking difference from patterns obtained with MAbs raised previously against carp spermatozoa. Differences between male and female germ cells were not observed with the WCG-MAbs during gonad development, indicating that a common set of surface antigens is shared between germ cells of both sexes up to and including spermatogonia and oogonia.Abbreviation WCG Wageningen carp spermatogonia antibody  相似文献   

17.
18.
Primordial germ cells (PGCs) and somatic cells originate from postimplantation epiblast cells in mice. As pluripotency is lost upon differentiation of somatic lineages, a naive epigenome and the pluripotency network are re‐established during PGC development. Here we demonstrate that Prdm14 contributes not only to PGC specification, but also to naive pluripotency in embryonic stem (ES) cells by repressing the DNA methylation machinery and fibroblast growth factor (FGF) signalling. This indicates a critical role for Prdm14 in programming PGCs and promoting pluripotency in ES cells.  相似文献   

19.
The germ line is established in animal embryos with the formation of primordial germ cells (PGCs), which give rise to gametes. Therefore, the need to form PGCs can act as a developmental constraint by inhibiting the evolution of embryonic patterning mechanisms that compromise their development. Conversely, events that stabilize the PGCs may liberate these constraints. Two modes of germ cell determination exist in animal embryos: (a) either PGCs are predetermined by the inheritance of germ cell determinants (germ plasm) or (b) PGCs are formed by inducing signals secreted by embryonic tissues (i.e., regulative determination). Surprisingly, among the major extant amphibian lineages, one mechanism is found in urodeles and the other in anurans. In anuran amphibians PGCs are predetermined by germ plasm; in urodele amphibians PGCs are formed by inducing signals. To determine which mechanism is ancestral to the tetrapod lineage and to understand the pattern of inheritance in higher vertebrates, we used a phylogenetic approach to analyze basic morphological processes in both groups and correlated these with mechanisms of germ cell determination. Our results indicate that regulative germ cell determination is a property of embryos retaining ancestral embryological processes, whereas predetermined germ cells are found in embryos with derived morphological traits. These correlations suggest that regulative germ cell formation is an important developmental constraint in vertebrate embryos, acting before the highly conserved pharyngula stage. Moreover, our analysis suggests that germ plasm has evolved independently in several lineages of vertebrate embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号