首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify genes involved in poly(A) metabolism, we screened the yeast gene deletion collection for growth defects in the presence of cordycepin (3′-deoxyadenosine), a precursor to the RNA chain terminating ATP analog cordycepin triphosphate. Δpho80 and Δpho85 strains, which have a constitutively active phosphate-response pathway, were identified as cordycepin hypersensitive. We show that inorganic polyphosphate (poly P) accumulated in these strains and that poly P is a potent inhibitor of poly(A) polymerase activity in vitro. Binding analyses of poly P and yeast Pap1p revealed an interaction with a kD in the low nanomolar range. Poly P also bound mammalian poly(A) polymerase, however, with a 10-fold higher kD compared to yeast Pap1p. Genetic tests with double mutants of Δpho80 and other genes involved in phosphate homeostasis and poly P accumulation suggest that poly P contributed to cordycepin hypersensitivity. Synergistic inhibition of mRNA synthesis through poly P-mediated inhibition of Pap1p and through cordycepin-mediated RNA chain termination may thus account for hypersensitive growth of Δpho80 and Δpho85 strains in the presence of the chain terminator. Consistent with this, a mutation in the 3′-end formation component rna14 was synthetic lethal in combination with Δpho80. Based on these observations, we suggest that binding of poly P to poly(A) polymerase negatively regulates its activity.  相似文献   

2.
3.
4.
5.
Phosphonoacetate was found to be an inhibitor of the DNA polymerase α from three human cells, HeLa, Wi-38, and phytohemagglutinin-stimulated lymphocytes. The inhibition patterns were determined. The apparent inhibition constants (Kii) were about 30 μm. Thus the DNA polymerase α is 15 to 30 times less sensitive to Phosphonoacetate than the herpesvirus-induced DNA polymerase. The DNA polymerase α from Chinese hamster ovary cells and calf thymus was also inhibited. The DNA polymerases β and γ from the eucaryotic cells were relatively insensitive to phosphonoacetate. The sensitivity of the DNA polymerase α and the relative insensitivity of the DNA polymerase β and γ appeared to be general characteristics of the vertebrate polymerases, DNA polymerases from two other eucaryotic cells, yeast DNA polymerase A and B and tobacco cell DNA polymerase, were inhibited by phosphonoacetate, and to about the same extent as the α-polymerases. Fourteen phosphonate analogs were examined for inhibition of the HeLa DNA polymerase α. Only one, phosphonoformate, was an inhibitor. The mechanism of inhibition for phosphonoformate was analogous to that for phosphonoacetate.  相似文献   

6.
DNA polymerase α1, a subspecies of DNA polymerase α of Ehrlich ascites tumor cells, was associated with a novel RNA polymerase activity and utilized poly(dT) and single-stranded circular fd DNA as a template without added primer in the presence of ribonucleoside triphosphates and a specific stimulating factor. DNA synthesis in the above system was inhibited by the ATP analogue, 2′-deoxy-2′-azidoadenosine 5′-triphosphate more than the DNA synthesis with poly(dT)·oligo(rA) by DNA polymerase α1 and RNA synthesis by mouse RNA polymerases I and II. Kinetic analysis showed that the analogue inhibited DNA polymerase α1 activity on poly(dT) competitively with respect to ATP, suggesting that the analogue inhibited RNA synthesis by the associated RNA polymerase activity.  相似文献   

7.
Cordycepin (100–200 μg/ml) blocked synthesis of all species of RNA separable by gel electrophoresis and by cellulose chromatography, similarly to actinomycin D, but more efficiently and rapidly. At low concentrations (40–80 μ/ml) cordycepin inhibited predominantly ribosomal RNA synthesis in Physarum, like toyocamycin, another adenosine analog.In nuclear preparations polyadenylylation of RNA was not affected by cordycepin. However, in the presence of cordycepin, no poly(A) RNA was found in the polysome fraction.  相似文献   

8.
Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) drastically lowered (70–73%) the relative abundance of poly(A)+ RNA. This was paralleled by a significant loss in the activities of RNA polymerase II (60–70%) and poly(A) polymerase (80–85%) enzymes. The inhibition of RNA polymerase II (60–65%) and poly(A) polymerase (70–85%) activities was also witnessed by the in vitro addition of the fungal extract to the enzyme preparations isolated from healthy embryos. The fungal extract showed negligible phosphatase and nuclease activities. This ruled out the possibility of rapid degradation of the labelled substrate [3H]ATP, primer RNA, or even the labelled reaction products under our assay conditions. The inhibitory effect of the fungal extract could be alleviated by fractionating the treated enzyme preparation by phosphocellulose chromatography. This indicated that the fungal extract was directly responsible for the inactivation of the polymerases in a reversible manner. The inhibitory function of the fungal extract was destroyed by treatment with pronase, but not with RNAase A and RNAase Ti. Poly(A) ‘tails’ were enzymatically excised from 32P-labelled poly(A)+ RNA and fractionated on acrylamide gels for autoradiographic analysis. The lengths of the 32P-labelled poly(A) ‘tails’ in control and infected embryos turned out to be identical (64 nucleotides). Our results suggest that the relative abundance of poly(A)+ RNA is diminished in fungal-infected wheat embryos through the selective inactivation of RNA polymerase II and poly(A) polymerase enzymes.  相似文献   

9.
[Rpb1 and Rpb2] Mapping of the contact sites␣on two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II with two small subunits, Rpb3 and Rpb5, was carried out using the two-hybrid screening system in the budding yeast Saccharomyces cerevisiae. Rpb5 was found to interact with any fragment of Rpb1 that contained the region H, which is conserved among the subunit 1 homologues of all RNA polymerases, including the β' subunit of prokaryotic RNA polymerases. In agreement with the fact that Rpb5 is shared among all three forms of eukaryotic RNA polymerases, the region H of RNA polymerase I subunit 1 (Rpa190) was also found to interact with Rpb5. On the other hand, two-hybrid screening of Rpb2 fragments from RNA polymerase II indicated the presence of an Rpb3 contact site in the region H which is conserved among the subunit 2 homologues of all RNA polymerases, including the β subunit of prokaryotic RNA polymerases. Possible functions of the regions H in the subunits 1 and 2 are discussed. Received: 10 December 1997 / Accepted: 14 April 1998  相似文献   

10.
The effect of cordycepin 5'-triphosphate on poly(A) synthesis was investigated in isolated rat hepatic nuclei. Nuclei were incubated in the absence and presence of exogenous primer in order to distinguish the chromatin-associated poly(A) polymerase from the "free" enzyme (Jacob, S.T., Roe, F.J. and Rose, K.M. (1976) Biochem. J. 153, 733--735). The chromatin-bound enzyme, which adds adenylate residues onto the endogenous RNA, was selectively inhibited at low concentrations of cordycepin 5'-triphosphate, 50% inhibition being achieved at 2microng/ml. At least 80 times more inhibitor was required for 50% reduction in the "free" nuclear poly(A) polymerase activity. Inhibition of DNA-dependent RNA synthesis also required higher concentrations of the nucleotide analogue. These data not only offer a mechanism for the selective inhibition of initial polyadenylation of heterogeneous nuclear RNA in vivo by cordycepin, but also provide a satisfactory explanation for the indiscriminate effect of the inhibitor on partially purified or "free" poly(A) and RNA polymerases.  相似文献   

11.
12.
13.
Multiple forms of DNA-dependent RNA polymerase were resolved by DEAE-Sephadex chromatography. In addition to RNA polymerases, an active poly(A) polymerase was also fractionated. RNA polymerases were examined for their capacity to synthesize poly(A). None of the freshly prepared enzymes could efficiently make poly(A) in presence or absence of exogenous primers. However, “aging” of polymerase II by simple incubation at 37°C resulted in the loss of RNA polymerizing activity with a corresponding increase in poly(A) synthesizing activity. Transformation of RNA polymerase to poly(A) polymerase resulted in reduced capacity to transcribe native DNA and altered chromatographic behavior. The results suggest that subunits of polymerase II obligatory to DNA-dependent RNA synthesis were degraded by “aging” and that a stable subunit of the RNA polymerase could preferentially make poly(A).  相似文献   

14.
The synthesis of ribosomal precursor RNA in Novikoff hepatoma (N1S1) cells is very sensitive to cordycepin (3'-dA). The synthesis of hnRNA, however, is resistant to inhibition concentrations of 3'-dA that completely block the synthesis of 45S ribosomal RNA precursor. We have examined the RNA polymerases present in these cultured cells with regard to their sensitivity to cordycepin 5'-triphosphate (3'-dATP) in an effort to explain the differential inhibition of RNA synthesis observed in vivo. RNA polymerases I and II were characterized on the basis of their chromatographic behavior on DEAE-Sephadex, as well as the response of their enzymatic activities to ionic strength, the divalent metal ions Mn2+ and Mg2+, and the toxin alpha-amanitin. For both enzymes the inhibition of in vitro RNA synthesis by 3'-dATP was competitive for ATP. The km values for ATP and the K1 values for 3'-dATP for the two enzymes were quite similar. RNA polymerase II, the enzyme presumed responsible for hnRNA synthesis, was actually slightly more sensitive to 3'-dATP than RNA polymerase I, the enzyme presumed responsible for ribosomal precursor RNA synthesis. Similar data were obtained when the RNA polymerases were assayed in isolated nuclei. These results indicate that the differential inhibition of RNA synthesis caused by 3'-dA in vivo cannot be simply explained by differential sensitivity of RNA polymerases I and II to 3'-dATP.  相似文献   

15.
16.
The interactions of azidothymidine triphosphate, the metabolically active form of the anti-AIDS drug azidothymidine (zidovudine), with the cellular DNA polymerases alpha, delta, and epsilon, as well as with the RNA primer-forming enzyme DNA primase were studied in vitro. DNA polymerase alpha was shown to incorporate azidothymidine monophosphate into a growing polynucleotide chain. This occurred 2000-fold slower than the incorporation of natural dTTP. Despite the ability of polymerase alpha to use azidothymidine triphosphate as an alternate substrate, this compound was only marginally inhibitory to the enzyme (Ki greater than 1 mM). Furthermore, the DNA primase activity associated with DNA polymerase alpha was barely inhibited by azidothymidine triphosphate (Ki greater than 1 mM). Inhibition was more pronounced for DNA polymerases delta and epsilon. The type of inhibition was competitive with respect to dTTP, with Ki values of 250 and 320 microM, respectively. No incorporation of azidothymidine monophosphate was detectable with these two DNA polymerases because their associated 3'- to 5'-exonuclease activities degraded primer molecules prior to any measurable elongation. Template-primer systems with a preformed 3'-azidothymidine-containing primer terminus inhibited the three replicative polymerases rather potently. DNA polymerase alpha was inhibited with a Ki of 150 nM and polymerases delta and epsilon with Ki values of 25 and 20 nM, respectively. The type of inhibition was competitive with respect to the unmodified substrate poly(dA).oligo(dT) for all DNA polymerases tested. Performed 3'-azidothymidine-containing primers hybridized to poly(dA) were rather resistant to degradation by the 3'- to 5'-exonuclease of DNA polymerases epsilon and more susceptible to the analogous activity that copurified with DNA polymerase delta. It is proposed that the repair of 3'-azidothymidine-containing primers might become rate-limiting for the process of DNA replication in cells that have been treated with azidothymidine triphosphate.  相似文献   

17.
Partial purification and characterization of DNA-dependent RNA-polymerases from nauplius larvae of the brine shrimp, Artemia salina, are described. Fractionation of solubilized RNA-polymerases on columns of DEAE-cellulose yielded partially purified preparations of RNA polymerases I and II. The properties of these enzymes were found to be similar to properties of corresponding enzymes from other animal sources. A significant change in the relative amounts of polymerases I and II occurs between 36 and 72 hr of development. Polymerase activity obtained from 36-hr nauplii consisted of approximately equal amounts of polymerases I and II, whereas polymerase II accounted for more than 80% of the activity recovered from 72-hr nauplii. Total polymerase activity was lower at 72 than at 36 hr. The significance of these changes in relation to the decrease in RNA synthesis in vivo that occurs after 36 hr is discussed.  相似文献   

18.
The effect of polyamines on the polyadenylation reaction in vitro was investigated. Varying concentrations of spermine were added to the reaction catalyzed by purified poly(A) polymerase using rat liver nuclear RNA, poly(A), Escherichia coli tRNA or (Ap)3A as exogenous primers. The enzyme activity decreased progressively with increasing concentrations of polyamines; complete inhibition was obtained at 0.4 and 1.2 mm spermine for the nuclear RNA- and poly(A)-primed reactions, respectively. No inhibition was observed for the (Ap)3A-primed reaction. Spermidine and putrescine also inhibited polyadenylation but to a lesser extent than spermine. The degree of inhibition by spermine was related to the polynucleotide primer concentrations. Spermine prevented polyadenylation by binding to the primer but not to the poly(A) polymerase molecule as shown by the migration of [14C]spermine through glycerol gradients after preincubation with enzyme or tRNA. At concentrations inhibitory to polyadenylation in vitro, spermine could stimulate the DNA-dependent RNA synthesis catalyzed by RNA polymerase II. The present study suggests that low levels of polyamines could be used as specific inhibitors of the poly(A) synthesis in vitro.  相似文献   

19.
20.
A new yeast poly(A) polymerase complex involved in RNA quality control   总被引:2,自引:0,他引:2  
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号