首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons   总被引:1,自引:0,他引:1  
Reelin, its lipoprotein receptors [very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (ApoER2; also known as Lrp8)], and the cytoplasmic adaptor protein disabled 1 (Dab1) are important for the correct formation of layers in the cerebral cortex. Reeler mice lacking the reelin protein show altered radial neuronal migration resulting in an inversion of cortical layers. ApoER2 Vldlr double-knockout mutants and Dab1 mutants show a reeler-like phenotype, whereas milder phenotypes are found if only one of the two lipoprotein receptors for reelin is absent. However, the precise role of the individual reelin receptors in neuronal migration remained unclear. In the study reported here, we performed fate mapping of newly generated cortical neurons in single and double receptor mutants using bromodeoxyuridine-labeling and layer-specific markers. We present evidence for divergent roles of the two reelin receptors Vldlr and ApoER2, with Vldlr mediating a stop signal for migrating neurons and ApoER2 being essential for the migration of late generated neocortical neurons.  相似文献   

3.
4.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

5.
Pozas E  Ibáñez CF 《Neuron》2005,45(5):701-713
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of GABAergic cells. These effects required GFRalpha1 but neither RET nor NCAM, the two transmembrane signaling receptors known for GDNF. Mutant mice lacking GDNF or GFRalpha1, but neither RET nor NCAM, showed reduced numbers of GABAergic cells in the cerebral cortex and hippocampus. We conclude that one of the normal functions of GDNF signaling via GFRalpha1 in the developing brain is to promote the differentiation and migration of cortical GABAergic neurons. The lack of involvement of RET or NCAM in these processes suggests the existence of additional transmembrane effectors for GDNF.  相似文献   

6.
Development of appropriate dendritic arbors is crucial for neuronal information transfer. We show, using seizure-related gene 6 (sez-6) null mutant mice, that Sez-6 is required for normal dendritic arborization of cortical neurons. Deep-layer pyramidal neurons in the somatosensory cortex of sez-6 null mice exhibit an excess of short dendrites, and cultured cortical neurons lacking Sez-6 display excessive neurite branching. Overexpression of individual Sez-6 isoforms in knockout neurons reveals opposing actions of membrane-bound and secreted Sez-6 proteins, with membrane-bound Sez-6 exerting an antibranching effect under both basal and depolarizing conditions. Layer V pyramidal neurons in knockout brain slices show reduced excitatory postsynaptic responses and a reduced dendritic spine density, reflected by diminished punctate staining for postsynaptic density 95 (PSD-95). In behavioral tests, the sez-6 null mice display specific exploratory, motor, and cognitive deficits. In conclusion, cell-surface protein complexes involving Sez-6 help to sculpt the dendritic arbor, in turn enhancing synaptic connectivity.  相似文献   

7.
Recent studies showed that endocytosis is enhanced in neurons exposed to an excitototoxic stimulus. We here confirm and analyze this new phenomenon using dissociated cortical neuronal cultures. NMDA-induced uptake (FITC-dextran or FITC or horseradish peroxidase) occurs in these cultures and is due to endocytosis, not to cell entry through damaged membranes; it requires an excitotoxic dose of NMDA and is dependent on extracellular calcium, but occurs early, while the neuron is still intact and viable. It involves two components, NMDA-induced and constitutive, with different characteristics. Neither component involves specific binding of the endocytosed molecules to a saturable receptor. Strikingly, molecules internalized by the NMDA-induced component are targeted to neuronal nuclei. This component, but not the constitutive one, is blocked by a c-Jun N-terminal protein kinase inhibitor. In conclusion, an excitotoxic dose of NMDA triggers c-Jun N-terminal protein kinase-dependent endocytosis in cortical neuronal cultures, providing an in vitro model of the excitotoxicity-induced endocytosis reported in intact tissues.  相似文献   

8.
During cortical development, newly generated neurons migrate radially toward their final positions. Although several candidate genes essential for this radial migration have been reported, the signaling pathways regulating it are largely unclear. Here we studied the role of phosphatidylinositol (PI) 3-kinase and its downstream signaling molecules in the radial migration of cortical neurons in vivo and in vitro. The expression of constitutively active and dominant-negative PI 3-kinases markedly inhibited radial migration. In the neocortical slice culture, a PI 3-kinase inhibitor suppressed the formation of GTP-bound Rac1 and Cdc42 and radial migration. Constitutively active and dominant-negative forms of Rac1 and Cdc42 but not Akt also significantly inhibited radial migration. In migrating neurons, wild-type Rac1 and Cdc42 showed different localizations; Rac1 localized to the plasma membrane and Cdc42 to the perinuclear region on the side of the leading processes. These results suggest that both the PI 3-kinase/Rac1 and Cdc42 pathways are involved in the radial migration of cortical neurons and that they have different roles.  相似文献   

9.
Postsynaptic molecules with PDZ domains (PDZ proteins) interact with various glutamate receptors and regulate their subcellular trafficking and stability. In rat neocortical development, the protein expression of AMPA-type glutamate receptor GluR1 lagged behind its mRNA expression and rather paralleled an increase in PDZ protein levels. One of the neurotrophins, brain-derived neurotrophic factor (BDNF), appeared to contribute to this process, regulating the PDZ protein expression. In neocortical cultures, BDNF treatment upregulated SAP97, GRIP1, and Pick1 PDZ proteins. Conversely, BDNF gene targeting downregulated these same PDZ molecules. The BDNF-triggered increases in PDZ proteins resulted in the elevation of their total association with the AMPA receptors GluR1 and GluR2/3, which led to the increase in AMPA receptor proteins. When Sindbis viruses carrying GluR1 or GluR2 C-terminal decoys disrupted their interactions, GluR2 C-terminal decoys inhibited both BDNF-triggered GluR1 and GluR2/3 increases, whereas GluR1 C-terminal decoys blocked only the BDNF-triggered GluR1 increase. In agreement, coexpression of SAP97 and GluR1 in nonneuronal HEK293 cells increased both proteins compared with their single transfection, implying mutual stabilization. This work reveals a novel function of BDNF in postsynaptic development by regulating the PDZ protein expression.  相似文献   

10.
11.
12.
Spikes were recorded extracellularly and IPSPs intracellularly from auditory cortical neurons of cats immobilized with D-tubocurarine in response to stimulation of geniculo-cortical fibers. Fibers whose stimulation induces IPSPs in auditory cortical neurons mainly have low thresholds. When two stimuli, each of which separately evoked an IPSP of maximal amplitude, were applied to them the shortest interval at which the second stimulus evoked an effect was 2.5–3 msec. This effect consisted of an increase in the duration of the integral IPSP, the amplitude of which either remained unchanged or increased under these circumstances by only 5–10%. The interval at which a separate IPSP appeared in response to the second stimulus depended on the duration of the ascending phase of the IPSP and varied from 4 to 22 msec for different neurons. The amplitude of the second IPSP in this case depended on the interval between stimuli. Under moderately deep pentobarbital anesthesia the number of neurons responding to stimulation of the geniculo-cortical fibers by spikes fell sharply but the number of neurons responding by primary IPSPs remained almost unchanged. Under very deep pentobarbital anesthesia, when spike responses of the cortical neurons completely disappeared, the IPSPs also were completely suppressed. It is concluded that inhibitory neurons of the auditory cortex are excited by thick low-threshold fibers, they have a short refractory period, and they are resistant to the narcotic action of pentobarbital.  相似文献   

13.
Receptive fields of auditory cortical neurons were studied by electrical stimulation of nerve fibers in different parts of the cochlea in cats anesthetized with pentobarbital. The dimensions of the receptive fields were shown to depend on the topographic arrangement of the neuron in the auditory cortex. The more caudad the neuron on the cortical projection of the cochlea in the primary auditory cortex, the more extensive its receptive field. The receptive fields were narrowest in the basal turn of the cochlea and were symmetrical with respect to their center. It is suggested that the region of finest discrimination of acoustic stimuli in cats is located in the basal region of the cochlea, i.e., in that part of its receptor system which has the narrowest receptive field and is represented by significantly more (than the middle and apical regions of the cochlea) nerve cells in the primary auditory cortex [1].A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 467–473, September–October, 1981.  相似文献   

14.
Extra DNA in forebrain cortical neurons   总被引:3,自引:0,他引:3  
Combined cytochemical and biochemical techniques show that neurons from the forebrain cortex of various mammals (rat, mouse, and rabbit) contain near, but not full, 4c DNA levels (c, DNA content of haploid chromosome set). This extra DNA is predominantly synthesized post-natally. More specifically, in rats a wave of DNA synthesis starts a few hours before birth and extends well into the post-natal period, levelling off after 30 days. Density labelling experiments using [5-3H]-bromo-2′-deoxyuridine (BUdR) suggest that the DNA synthesis proceeds semiconservatively, with the prenatally formed DNA serving as a template for post-natal strand replication. Although all three mammalian DNA polymerases (α, β, and γ) can be detected in the cortical neurons of young rats their developmental course does not allow one to unambiguously identify the enzyme(s) responsible for the observed DNA increase. Density gradient centrifugations of neuronal DNA post-natally labelled with [3H]thymidine give no indication of a preferential enrichment of defined segments of the genome. In spite of this, the present data do not rule out the possibility that functionally important sequences might be selectively replicated.  相似文献   

15.
Cortical receptive fields represent the signal preferences of sensory neurons. Receptive fields are thought to provide a representation of sensory experience from which the cerebral cortex may make interpretations. While it is essential to determine a neuron's receptive field, it remains unclear which features of the acoustic environment are specifically represented by neurons in the primary auditory cortex (AI). We characterized cat AI spectrotemporal receptive fields (STRFs) by finding both the spike-triggered average (STA) and stimulus dimensions that maximized the mutual information between response and stimulus. We derived a nonlinearity relating spiking to stimulus projection onto two maximally informative dimensions (MIDs). The STA was highly correlated with the first MID. Generally, the nonlinearity for the first MID was asymmetric and often monotonic in shape, while the second MID nonlinearity was symmetric and nonmonotonic. The joint nonlinearity for both MIDs revealed that most first and second MIDs were synergistic and thus should be considered conjointly. The difference between the nonlinearities suggests different possible roles for the MIDs in auditory processing.  相似文献   

16.
Activity of 55 neurons of the sensorimotor cerebral cortex of rats was recorded at iontophoretic application of acetylcholine. 36% of neurons exhibited an excitatory reaction, 30%--inhibitory-excitatory, 18%--inhibitory-excitatory-inhibitory and 16%--excitatory-inhibitory reactions; the type of reaction, in contrast to its expressiveness, did not depend on the the type of reaction, in contrast to its expressiveness, did not depend on the strength of phoresis current. Duration of the excitatory components entering reactions of all neurons formed a continuous series of values in the range of 1.4 to 16 s and had 2 maxima--at the 4-th and 8-th seconds. It is suggested that duration of this component of reaction reflects important functional properties of the nerve cell.  相似文献   

17.
18.
Coopersmith R  Neve RL 《BioTechniques》1999,27(6):1156-1160
The study of protein-protein interactions in the nervous system has become dependent on the ability to express foreign proteins (or to overexpress endogenous proteins) within neurons. Often, multiple genes need to be overexpressed in the same cell. To investigate the simultaneous co-expression of more than one virally introduced gene in primary cortical neurons, we infected cultures with two different herpes simplex virus (HSV) vectors and analyzed the proportion of singly and doubly infected cells. The vast majority of neurons expressed both gene products, with a smaller number expressing one or the other protein alone. Increasing the quantity of virus caused an increase in the proportion of doubly labeled cells at the expense of singly labeled cells, which is consistent with a model in which infection with one viral vector is independent of infection with the other. We conclude that co-infection with HSV vectors is an efficient way to obtain expression of multiple gene products within individual primary culture neurons.  相似文献   

19.
Synthesis of cortical proteins in Tetrahymena   总被引:3,自引:0,他引:3  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号