首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantitative analysis of circular dichroic spectra of native human plasma fibronectin according to the method of Provencher and Gl?ckner [Provencher, S. W., & Gl?ckner, J. (1981) Biochemistry 20, 33-37] indicated the presence of beta-sheet (79%), beta-turn (21%), but no alpha-helix or random coil in the secondary structure. The calf alveolar heparan sulfates induced a change in the conformation of fibronectin: the magnitude of the change depended on the molecular properties of the particular heparan sulfate preparations.  相似文献   

2.
A new procedure based on the statistical method of "variable selection" is used to predict the secondary structure of proteins from circular dichroism spectra. Variable selection adds the flexibility found in the Provencher and Gl?ckner method (S. W. Provencher and J. Gl?ckner, 1981, Biochemistry 20, 33-37) to the method of Hennessey and Johnson (J. P. Hennessey and W. C. Johnson, 1981, Biochemistry 20, 1085-1094). Two analytical methods are presented for choosing a solution from the series generated by the Provencher and Gl?ckner method, and this improves the technique. All three methods are compared and it is shown that both the variable selection method and the improved Provencher and Gl?ckner methods have equivalent reliability superior to the original Hennessey and Johnson method. For the new variable selection method, correlation coefficients calculated between X-ray structure and predicted secondary structures for data measured to 178 nm are: 0.97 for alpha-helix, 0.75 for beta-sheet, 0.50 for beta-turn, and 0.89 for other structures. Although the variable selection method improves the analysis of circular dichroism data truncated at 190 nm, data measured to 178 nm gives superior results. It is shown that improving the fit to the measured CD beyond the accuracy of the data can result in poorer analyses.  相似文献   

3.
M M Teeter  M Whitlow 《Proteins》1988,4(4):262-273
Methods that analyze protein circular dichroism (CD) spectra for fractions of secondary structure are evaluated for the plant protein crambin, which has a known high-resolution crystal structure. In addition, a two-step secondary structure prediction scheme is presented and used for the toxins homologous to crambin, shown by others to have secondary structures similar to crambin. The test of CD spectral analysis methods with the protein crambin employed two computer programs and several CD basis sets. Crambin's crystal structure, known to 0.945A resolution (Hendrickson, W.A., Teeter, M.M. Nature 290:107-113, 1981), allows accurate evaluation of results. Analysis with the protein spectra basis sets (Provencher, S.W., Gl?ckner, J. Biochemistry 20:33-37, 1981) as modified (Manavalan, P., Johnson, W.C., Jr. Anal. Biochem. 167:76-85, 1987) agreed most closely with crambin's crystal structure. This method was then applied to the CD spectra of the membrane-active toxins homologous to crambin (alpha 1- and beta-purothionin, phoratoxin A and B, and viscotoxin A3 and B). The new program SEQ (pronounced "seek") was developed to assign the secondary structure along the protein chain in a hierarchical fashion and applied to the plant toxins. The method constrained the secondary structure fractions to those from CD analysis and combined standard statistical methods with amphipathic helix location. Both CD-arrived secondary structure percentages and sequence assignment indicate that the viscotoxins are structurally most similar to crambin. Purothionin's secondary structure was predicted to be fundamentally similar to crambin's with a difference at the start of the first helix. This assignment agreed with Raman and NMR analyses of purothionin and lends validity to the method presented here. Differences from the NMR in the CD secondary structure fraction analysis for phoratoxin suggest interference in the CD from tryptophan residues.  相似文献   

4.
Circular dichroism (CD) spectra of the structural protein of the bacteriophage T4 sheath (gp 18) in a monomeric native state, helices, polysheaths and contracted sheaths were measured in the range 184-310 nm. The secondary structure of the protein studied was calculated from the spectra in the range 190-240 nm according to Provencher and Gl?ckner. It has been shown that the polymerization is proceeded without change of the alpha-helical content in the secondary structure of gp 18: estimated alpha-helix in monomeric gp 18, helices and polysheaths was 39%. The beta-form content in monomeric gp 18, helices and polysheaths was 33, 32 and 37%, respectively. Tail sheath contraction is attended by a 14% decrease in gp 18 alpha-helicity and a 5% increase in its beta-form content.  相似文献   

5.
The conformation of porcine serum ferric transferrin (Tf) and its stability against denaturation were studied by circular dichroism. Tf was estimated to have 19-24% alpha-helix and 50-55% beta-sheet based on the methods of Chang et al. (Chang, C.T., Wu, C.-S.C., & Yang, J.T., 1978, Anal. Biochem. 91, 13-31) and Provencher and Glöckner (Provencher, S.W. & Glöckner, J., 1981, Biochemistry 20, 33-37). Removal of the bound ferric ions (apo-Tf) did not alter the overall conformation, but there were subtle changes in local conformation based on its near-UV CD spectrum. The Tfs were stable between pH 3.5 and 11. Denaturation by guanidine hydrochloride (Gu-HCl) showed two transitions at 1.6 and 3.4 M denaturant. The process of denaturation by acid and base was reversible, whereas that by Gu-HCl was partially reversible. The irreversible thermal unfolding of Tfs began at temperatures above 60 degrees C and was not complete even at 80 degrees C. The bound irons (based on absorbance at 460 nm) were completely released at pH < 4 or in Gu-HCl solution above 1.7 M, when the protein began to unfold, but they remained intact in neutral solution even at 85 degrees C. The NH2- and COOH-terminal halves of the Tf molecule obtained by limited trypsin digestion had CD spectra similar to the spectrum of native Tf, and the COOH-terminal fragment had more stable secondary structure than the NH2-terminal fragment.  相似文献   

6.
For functional reconstitution of bacterial cotransporters (carriers or permeases) including the sodium-coupled branched-chain amino acid carrier (LIV-II carrier) of Pseudomonas aeruginosa, the presence of phospholipid is required through the process of solubilization and purification of the transporters from the bacterial membranes, suggesting the possibility that phospholipid may stabilize the structure of the cotransporter proteins to be in a functional form. In this study, this possibility was examined by studying the effect of denaturant on the secondary structure of the LIV-II carrier purified in the absence and presence of phospholipid using circular dichroism (CD) spectroscopy. CD spectra of the purified LIV-II carrier solubilized in n-octyl-beta-D-glucopyranoside (OG), OG/dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) mixture, and dispersed into DOPE/DOPG small unilamellar vesicles were measured in the absence of denaturant. The three spectra were very similar and had a trough at 222 nm with mean residue molar ellipticity of -23000 deg.cm(2)/dmol and a shoulder at 208 nm. CD spectral analyses with three different methods (S.W. Provencher, J. Gl?ckner, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20 (1981) 33-37; J.Y. Yang, C.-S.C. Wu, H.Z. Martinez, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130 (1986) 208-269; N. Sreerama, R.W. Woody, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209 (1993) 32-44) revealed that the LIV-II carrier solubilized in OG/DOPE/DOPG mixture contained 69-75% alpha-helix and 0-9% beta-sheet. Addition of 6 M guanidine hydrochloride decreased 48% of the amplitude at 222 nm of the CD spectrum of the carrier solubilized in OG alone and 9-14% of the CD amplitude of the carrier solubilized in OG/DOPE/DOPG or OG/dioleoylphosphatidylcholine mixture and dispersed in liposomes composed of DOPE/DOPG. These results show that the ordered secondary structure of the LIV-II carrier is partially unfolded in OG without phospholipid by denaturant but is greatly stabilized with phospholipids with oleoyl chains independently of their polar head group composition and suggest that the alpha-helical structure of the carrier is mainly embedded in the lipid environment.  相似文献   

7.
The secondary structure parameters of plant seed globulins (11S from Brassica napus L, 11S from Helianthus annuus L, IIS from Vicia faba, 7S from Phaseolus vulgaris L) have been determined from their circular dichroism spectra by the method of Provencher and Glöckner. According to this method, the proteins contain 40–50% β-sheet structure and only about 10% helical structure. We conclude, therefore, that the plant seed globulins belong to the class of β-sheet proteins. Their overall secondary structure is homologous. It is shown that the method of Provencher and Glöckner provides reasonable secondary structure parameters for proteins which are rich in β-sheet structure even if the spectral range utilized for analysis is restricted to 210–240 nm.  相似文献   

8.
An infrared (ir) method to determine the secondary structure of proteins in solution using the amide I region of the spectrum has been devised. The method is based on the circular dichroism (CD) matrix method for secondary structure analysis given by Compton and Johnson (L. A. Compton and W. C. Johnson, 1986, Anal. Biochem. 155, 155-167). The infrared data matrix was constructed from the normalized Fourier transform infrared spectra from 1700 to 1600 cm-1 of 17 commercially available proteins. The secondary structure matrix was constructed from the X-ray data of the seventeen proteins with secondary structure elements of helix, beta-sheet, beta-turn, and other (random). The CD and ir methods were compared by analyzing the proteins of the CD and ir databases as unknowns. Both methods produce similar results compared to structures obtained by X-ray crystallographic means with the CD slightly better for helix conformation, and the ir slightly better for beta-sheet. The relatively good ir analysis for concanavalin A and alpha-chymotrypsin indicate that the ir method is less affected by the presence of aromatic groups. The concentration of the protein and the cell path length need not be known for the ir analysis since the spectra can be normalized to the total ir intensity in the amide I region. The ir spectra for helix, beta-sheet, beta-turn, and other, as extracted from the data-base, agree with the literature band assignments. The ir data matrix and the inverse matrix necessary to analyze unknown proteins are presented.  相似文献   

9.
The secondary structure of the short tryptic headpiece of the lac repressor has been investigated by the analysis of its infrared and circular dichroic spectra. For the latter we used the method of Provencher and Gl?ckner [Biochemistry (1981) 20, 33-37], which seems to be at present the most successful for the determination of the beta content of proteins. Nevertheless our results indicate that in the case of the lac repressor headpiece this method overestimates the amount of beta structure. We find that the headpiece contains an important helical content of about 50%, depending slightly on the ionic strength. A decomposition of the infrared spectrum in a sum of Gaussian curves reveals clearly the absence of a vibrational band around 1630 cm-1, excluding thus the presence of a multi-stranded beta-pleated sheet. The only beta structure compatible with the infrared results seems to be a two-stranded antiparallel beta sheet, as judged from our results on the beta-sheet model-compound gramicidin S. The unusually strong intensity of the amide I' band is in favour of the existence of such a structure. The quantitative analysis of both infrared and circular dichroism spectra indicates the presence of a certain (but different) amount of beta structure. Comparing these results with several secondary structure predictions, part of the helical residues should be located between Leu-45 and (at least) Arg-35, and an eventual two-stranded beta sheet should be situated in the N-terminal part of the headpiece.  相似文献   

10.
The conformation and stability of Sendai virus fusion (F) protein were studied by circular dichroism spectroscopy, and the protein predictive models of Chou and Fasman and Robson and Suzuki were used to elucidate the secondary structure of Sendai virus F protein. The F protein conformation is predicted to contain 33% alpha-helix, 53% beta-sheet and 15% beta-turn by the Chou and Fasman model, and 30% alpha-helix, 55% beta-sheet, 9% beta-turn and 7% random coil by the Robson and Suzuki model. C.d. studies of F protein purified in the presence of the non-ionic detergent, n-octylglucoside, indicated the presence of 49% alpha-helix and 31% beta-sheet at pH 7.0, 54% alpha-helix and 28% beta-sheet at pH 9.0 and 50% alpha-helix and 23% beta-sheet at pH 5.4. A small change in conformation of the protein occurred when the pH was titrated from 7.0 to 5.4 and from 7.0 to 9.0 and a more pronounced conformational change occurred when the pH was changed from 9.0 to 5.4. The F protein in 0.2% n-octylglucoside was resistant to denaturation by 4 M guanidine hydrochloride, the reducing agent 20 mM mercaptoethanol, and to increases in temperature from 5 to 80 degrees C. Monoclonal anti-F protein antibody showed an increased binding to whole virus when the pH was changed from 7.0 to 9.0. The antibody binding was decreased when the pH was shifted from 9.0 to 5.4 Maximum haemolytic activity was observed with virus that was preincubated at pH 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
J Reed  V Kinzel 《Biochemistry》1984,23(7):1357-1362
The circular dichroism spectrum of the catalytic subunit of cAMP-dependent protein kinase was measured in the far-UV (190-240 nm) and near-UV (250-300 nm) region. Data from the far-UV spectra were processed with the CONTIN program for estimation of globular protein secondary structure [ Provencher , S. W. (1982) CONTIN (Version 2) User's Manual, European Molecular Biology Laboratory, Heidelberg, West Germany]. The composition of the protein determined by this method was 49 +/- 2% alpha-helix, 20 +/- 4% beta-sheet, and 31 +/- 3% remainder. This composition changes when the protein is allowed to bind Kemptide , a synthetic peptide substrate, with more than half of the disordered portion of the protein taking the form of beta-sheet. A certain portion of the alpha-helical structure also appears to move into a beta-sheet form. The near-UV CD spectrum of catalytic subunit shows changes in aromatic amino acid dichroism associated with substrate binding. These changes can be ascribed with a fair degree of certainty to alterations in the orientation of a tyrosine residue at the surface of the protein. These findings are discussed in terms of previous work on induced dichroism in this enzyme with regard to control mechanisms operating at the active site.  相似文献   

12.
The study is focused on the secondary structure of the external N-terminal segment of human erythrocyte glycophorin A (NN) which was determined by applying methods of CHOU et FASMAN and LIM. This hydrophilic glycophorin segment is assumed to consist of 48.5% ordered (alpha-helix, beta-sheet, beta-turn) and 51.5% unordered sequences. From the secondary structure suggestions are made concerning (i) peptide interaction and (ii) binding to the lipid bilayer of the N-terminal segment.  相似文献   

13.
A ridge regression method is presented for prediction of the secondary structure of proteins by the circular dichroism spectra (CD) from 190 to 236 nm. Eight types of the secondary structure were calculated on a microcalculator. The method is based on the X-ray data of Kabsh and Sander. The teaching rule is constructed on CD spectra of 30 proteins of all structural classes of the globular proteins (alpha, alpha/beta, alpha + beta and beta-proteins). The errors of the methods are analysed by removing each protein from the reference set and analyzing its structure in terms of the remaining proteins. Correlation coefficients and root-mean square deviations between CD and X-ray data were: 0.99 and 0.03 for alpha-helix, 0.86 and 0.02 for 3(10)-helix, 0.92 and 0.06 for antiparallel beta-sheet, 0.86 and 0.03 for parallel beta-sheet, 0.94 and 0.01 for T3 beta-turn, 0.85 and 0.02 for other beta-turn, 0.84 and 0.03 for S-bends, 0.83 and 0.04 for "random" structure.  相似文献   

14.
Lin SY  Hsieh TF  Wei YS 《Peptides》2005,26(4):543-549
The secondary structure of PGAIPG (Pro-Gly-Ala-IIe-Pro-Gly), a repeated hexapeptide of tropoelastin, in buffer solution of different pH was determined by using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The thermal-dependent structural change of PGAIPG in aqueous solution or in solid state was also examined by thermal FTIR microspectroscopy. The conformation of PGAIPG in aqueous solution exhibited a pH-dependent structural characterization. A predominant peak at 1614 cm(-1) (aggregated beta-sheet) with a shoulder near 1560 cm(-1) (beta-sheet) appeared in pH 5.5-8.5 buffer solutions. A new broad shoulder at 1651 cm(-1) (random coil and/or alpha-helix) with 1614 cm(-1) was observed in the pH 4.5 buffer solution. However, the broad shoulder at 1651 cm(-1) was converted to a maximum peak at 1679 cm(-1) (beta-turn/antiparallel beta-sheet) when the pH shifted from 4.5 to 3.5, but the original pronounced peak at 1614 cm(-1) became a shoulder. Once the pH was lowered to 2.5, the IR spectrum of PGAIPG was dominated by major absorption at 1679 cm(-1) with a minor peak at 1552 cm(-1) (alpha-helix/random coil). The result indicates that the pH was a predominant factor to transform PGAIPG structure from aggregated beta-sheet (pH 8.5) to beta-turn/intermolecular antiparallel beta-sheet (pH 2.5). Moreover, a partial conformation of PGAIPG with minor alpha-helix/random coil structures was also explored in the lower pH buffer solution. There was no thermal-dependent structural change for solid-state PGAIPG. The thermal-induced formation of aggregated beta-sheet for PGAIPG in aqueous solution was found from 28 to 30 degrees C, however, which might be correlated with the formation of an opaque gel that turned from clear solution. The formation of aggregated beta-sheet structure for PGAIPG beyond 30 degrees C might be due to the intermolecular hydrogen bonded interaction between the hydrophobic PGAIPG fragments induced by coacervation.  相似文献   

15.
A Dong  B Caughey  W S Caughey  K S Bhat  J E Coe 《Biochemistry》1992,31(39):9364-9370
The secondary structure of hamster female protein in aqueous solutions in the presence or absence of calcium and phosphorylcholine has been investigated using Fourier transform infrared spectroscopy. Our present studies provide the first evaluation of the secondary structure of FP and its calcium- and phosphorylcholine-dependent conformational changes. Quantitative analysis indicated that FP is composed of 50% beta-sheet, 11% alpha-helix, 29% beta-turn, and 10% random structures. Calcium- and phosphorylcholine-dependent infrared spectral changes were observed in regions assigned to beta-sheet, alpha-helix, turn, and random structures. The infrared-based secondary structure compositions were used as constraints to compute theoretical locations for the different secondary structures along the amino acid sequence of the FP protein. Two putative calcium-binding sites were proposed for FP (residues 93-109 and 150-168) as well as other members of the pentraxin family on the basis of the theoretical secondary structure predictions and the similarity in sequence between the pentraxins and EF-hand calcium-binding proteins. The changes in protein conformation detected upon binding of calcium and phosphorylcholine provide a mechanism for the effects of these ligands on physiologically important properties of the protein, e.g., activation of complement and association with amyloids.  相似文献   

16.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA.  相似文献   

17.
The conformation of bovine Hsc70, a 70-kDa heat shock cognate protein, and its conformational change upon binding to decapeptides, was studied by CD spectroscopy and secondary structure prediction (Chou, P.Y. & Fasman, G.D., 1974, Biochemistry 13, 222-245). The CD spectra were analyzed by the LINCOMB method, as well as by the convex constraint analysis (CCA) method (Perczel, A., Park, K., & Fasman, G.D., 1992, Anal. Biochem. 203, 83-93). The result of the CD analysis of Hsc70 (15% alpha-helix, 24% beta-sheet, 24% beta-turn, and 38% remainder) was very similar to the predicted secondary structure for the beta-sheet (24%) and the beta-turn (29%). However, there is disagreement between the alpha-helical content by CD analysis (15%) and the predicted structure (30%). In spite of the fact that the decapeptides contained a considerable amount of beta-sheet (22%), the interaction of the heat shock protein with the peptide resulted in an overall decrease in the content of beta-sheet conformation (-15%) of the complex. This may be due to induction of a molten globule state. The result of the CCA analysis indicated that the Hsc70 undergoes a conformational change upon binding the decapeptides.  相似文献   

18.
The 26 kD basic subunit of 280 kD buckwheat grain legumin has been partially characterized by measurement of its fluorescence and CD spectra. The protein has 22% alpha-helix, 36% beta-sheet, 12% beta-turn and 30% random coil secondary structure. In comparison with the basic subunits of other legumin-type proteins, the buckwheat legumin subunit has a high content of lysine and methionine. The protein also has higher ratios of lysine to arginine and methionine to arginine.  相似文献   

19.
Heat shock proteins are rapidly synthesized when cells are exposed to stressful agents that cause protein damage. The 70-kDa heat shock induced proteins and their closely related constitutively expressed cognate proteins bind to unfolded and aberrant polypeptides and to hydrophilic peptides. The structural features of the 70-kDa heat shock proteins that confer the ability to associate with diverse polypeptides are unknown. In this study, we have used circular dichroism (CD) spectroscopy and secondary structure prediction to analyze the secondary structure of the mammalian 70-kDa heat shock cognate protein (hsc 70). The far-ultraviolet CD spectrum of hsc 70 indicates a large fraction of alpha-helix in the protein and resembles the spectra one obtains from proteins of the alpha/beta structural class. Analysis of the CD spectra with deconvolution methods yielded estimates of secondary structure content. The results indicate about 40% alpha-helix and 20% aperiodic structure within hsc 70 and between 16-41% beta-sheet and 21-0% beta-turn. The Garnier-Osguthorpe-Robson method of secondary structure prediction was applied to the rat hsc 70 amino acid sequence. The predicted estimates of alpha-helix and aperiodic structure closely matched the values derived from the CD analysis, whereas the predicted estimates of beta-sheet and beta-turn were midway between the CD-derived values. Present evidence suggests that the polypeptide ligand binding domain of the 70-kDa heat shock protein resides within the C-terminal 160 amino acids [Milarski, K. L., & Morimoto, R. I. (1989) J. Cell Biol. 109, 1947-1962].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The role of the bacteriophage Mu-encoded A and B proteins is to direct the transposition of Mu DNA. These are the first active DNA transposition proteins to have been purified and their mechanism of action at the biochemical level is under intensive study. Structural studies on these proteins, however, have lagged behind their biochemical characterization. We report here near- and far-u.v. c.d. spectra for these proteins and their secondary structural features derived from these data. The Mu A protein appears to be composed of primarily beta-sheet (40%) with 24% alpha-helix, 9% beta-turn and 27% random coil. In contrast, the Mu B protein contains 55% alpha-helix with only 13% beta-sheet and 3+ beta-turn and 29% random coil. The near-u.v. c.d. spectrum of the A protein was not unusual; however, the profile of the B protein suggested either buried or restricted chromophores within the protein or short-range interactions between aromatic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号