首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arg2, in the N-terminal arm of the Mnt repressor, plays an important role in determining operator-binding specificity. In the complex of the Mnt tetramer with the 21 base-pair mnt operator, there are four potential sites for Arg2 interactions, two in the central region of the operator and two on the outer flanks of the operator. Single-chain variants of the dimeric N-terminal domain of Mnt containing one Arg2 residue and one Lys2 or Met2 residue were constructed and interactions with operator DNA were probed using Fe. EDTA affinity cleavage. The results of these orientation studies show that the majority of the energetically significant interactions mediated by Arg2 occur in the central region of the mnt operator. The RK2, RA2, and RM2 mutations reduce the free energy of operator binding by 1.7 kcal/mol, 3.3 kcal/mol, and 4.9 kcal/mol, respectively. Double-mutant thermodynamic cycle analyses using the RA2, RM2, and operator variants also reveal interaction free energies between Arg2 and operator base-pairs 9, 10, 11, 12 and 13, which in aggregate account for most of the Arg2 contribution to operator binding.  相似文献   

2.
The multidrug efflux pump MepA is a major contributor to multidrug resistance in Staphylococcus aureus. MepR, a member of the multiple antibiotic resistance regulator (MarR) family, represses mepA and its own gene. Here, we report the structure of a MepR–mepR operator complex. Structural comparison of DNA-bound MepR with ‘induced’ apoMepR reveals the large conformational changes needed to allow the DNA-binding winged helix-turn-helix motifs to interact with the consecutive major and minor grooves of the GTTAG signature sequence. Intriguingly, MepR makes no hydrogen bonds to major groove nucleobases. Rather, recognition-helix residues Thr60, Gly61, Pro62 and Thr63 make sequence-specifying van der Waals contacts with the TTAG bases. Removing these contacts dramatically affects MepR–DNA binding activity. The wings insert into the flanking minor grooves, whereby residue Arg87, buttressed by Asp85, interacts with the O2 of T4 and O4′ ribosyl oxygens of A23 and T4. Mutating Asp85 and Arg87, both conserved throughout the MarR family, markedly affects MepR repressor activity. The His14′:Arg59 and Arg10′:His35:Phe108 interaction networks stabilize the DNA-binding conformation of MepR thereby contributing significantly to its high affinity binding. A structure-guided model of the MepR–mepA operator complex suggests that MepR dimers do not interact directly and cooperative binding is likely achieved by DNA-mediated allosteric effects.  相似文献   

3.
4.
5.
6.
Single amino acid substitutions have been introduced throughout the N-terminal DNA binding region of the Mnt repressor, and the operator binding properties of the resulting mutant repressors have been assayed. These studies show that the side chains of Arg2, His6, Asn8, and Arg10 are critical for high affinity binding to operator DNA. Other side chains in the N-terminal region do not appear to play major roles in DNA recognition and binding. Specific alterations in the pattern of methylation protection afforded by the Arg2----Lys mutant protein suggest that Arg2 contacts the N7 groups of guanines 10 and 12 in the operator. In conjunction with previous results, these findings suggest that part of the N-terminal region of Mnt binds as an extended polypeptide strand within the major groove of the mnt operator.  相似文献   

7.
Residues 2, 6, 8 and 10 of Mnt repressor are the major determinants of operator DNA binding and recognition. Here, we investigate the interaction of wild-type Mnt and mutants bearing the Arg2----Lys, His6----Ala, Asn8----Ala and Arg10----Lys mutations with operator DNA modified by methylation or by symmetric base substitutions. The wild-type pattern of methylation interference is altered in specific ways for each of the mutant proteins. In addition, some of the mutant proteins show a 'loss of contact' phenotype with specific mutant operators. Taken together, these and previous results predict the following contacts between side chains in the Mnt tetramer and operator DNA: Arg2 recognizes the guanines at operator positions 10 and 12; His6 contacts the guanines at operator positions 5 and 17; Asn8 contacts operator positions 4, 7, 15 and 18; Arg10 contacts the guanines at operator positions 8 and 14. The proposed contacts can be accommodated in a structural model in which the anti-parallel beta-sheet motifs of Mnt dimers lie in the major grooves of each operator half-site, centered over pseudo-symmetry axes that are 5.5 bp from the central dyad axis of the operator.  相似文献   

8.
It is important to control CRISPR/Cas9 when sufficient editing is obtained. In the current study, rational engineering of guide RNAs (gRNAs) is performed to develop small-molecule-responsive CRISPR/Cas9. For our purpose, the sequence of gRNAs are modified to introduce ligand binding sites based on the rational design of ligand–RNA pairs. Using short target sequences, we demonstrate that the engineered RNA provides an excellent scaffold for binding small molecule ligands. Although the ‘stem–loop 1’ variants of gRNA induced variable cleavage activity for different target sequences, all ‘stem–loop 3’ variants are well tolerated for CRISPR/Cas9. We further demonstrate that this specific ligand–RNA interaction can be utilized for functional control of CRISPR/Cas9 in vitro and in human cells. Moreover, chemogenetic control of gene editing in human cells transfected with all-in-one plasmids encoding Cas9 and designer gRNAs is demonstrated. The strategy may become a general approach for generating switchable RNA or DNA for controlling other biological processes.  相似文献   

9.
Structural analysis by X-ray crystallography has indicated that direct contact occurs between Arg69, the second residue of the first helix of the helix-turn-helix (HTH) motif of the Trp repressor, and guanine in position 9 of the α-centred consensustrp operator. We therefore replaced residue 69 of the Trp repressor with Gly, Ile, Leu or Gln and tested the resultant repressor mutants for their binding to synthetic symmetrical α-or β-centredtrp operator variants, in vivo and in vitro. We present genetic and biochemical evidence that Ile in position 69 of the Trp repressor interacts specifically with thymine in position 9 of the α-centredtrp operator. There are also interactions with other bases in positions 8 and 9 of the α-centredtrp operator. In vitro, the Trp repressor of mutant RI69 binds to the consensus α-centredtrp operator and a similartrp operator variant that carries a T in position 9. In vivo analysis of the interactions of Trp repressor mutant RI69 with symmetrical variants of the β-centredtrp operator shows a change in the specificity of binding to a β-centred symmetricaltrp operator variant with a gua-nine to thymine substitution in position 5, which corresponds to position 9 of the α-centredtrp operator.  相似文献   

10.
Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes.  相似文献   

11.
Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1′–P4′ in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight binding inhibitor phages were selected against non-sulfated and sulfated human cationic trypsin. The selection pattern for the two targets differed mostly at the P2′ position, where variants selected against non-sulfated trypsin contained primarily aliphatic residues (Leu, Ile, Met), while variants selected against sulfated trypsin were enriched also for Arg. BPTI variants carrying Arg, Lys, Ile, Leu or Ala at the P2′ position of the binding loop were purified and equilibrium dissociation constants were determined against non-sulfated and sulfated cationic and anionic human trypsins. BPTI variants harboring apolar residues at P2′ exhibited 3–12-fold lower affinity to sulfated trypsin relative to the non-sulfated enzyme, whereas BPTI variants containing basic residues at P2′ had comparable affinity to both trypsin forms. Taken together, the observations demonstrate that the tyrosyl sulfate in human trypsins interacts with the P2′ position of the substrate-like inhibitor and this modification increases P2′ selectivity towards basic side chains.  相似文献   

12.
Minigenes encoding the peptide Met–Arg–Arg have been used to study the mechanism of toxicity of AGA codons proximal to the start codon or prior to the termination codon in bacteria. The codon sequences of the ‘mini-ORFs’ employed were initiator, combinations of AGA and CGA, and terminator. Both, AGA and CGA are low-usage Arg codons in ORFs of Escherichia coli but, whilst AGA is translated by the scarce tRNAArg4, CGA is recognized by the abundant tRNAArg2. Overexpression of minigenes harbouring AGA in the third position, next to a termination codon, was deleterious to the cell and led to the accumulation of peptidyl-tRNAArg4 and of the peptidyl-tRNA cognate to the preceding CGA or AGA Arg triplet. The minigenes carrying CGA in the third position were not toxic. Minigene-mediated toxicity and peptidyl-tRNA accumulation were suppressed by overproduction of tRNAArg4 but not by overproduction of peptidyl-tRNA hydrolase, an enzyme that is only active on substrates that have been released from the ribosome. Consistent with these findings, peptidyl-tRNAArg4 was identified to be mainly associated with ribosomes in a stand-by complex. These and previous results support the hypothesis that the primary mechanism of inhibition of protein synthesis by AGA triplets in pth+ cells involves sequestration of tRNAs as peptidyl-tRNA on the stalled ribosome.  相似文献   

13.
Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs ‘A’ and ‘B’ in the central nodule of fibrin monomer to complementary holes ‘a’ and ‘b’ in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob ‘A’ mimetic) and GHRP (knob ‘B’ mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5–7) and temperature (T = 25–37 °C). There were similar structural changes in holes ‘a’ and ‘b’ during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an “all-or-none” transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.  相似文献   

14.
We have made a systematic study of how the activity of an Escherichia coli promoter is affected by the base sequence immediately upstream of the –10 hexamer. Starting with an activator-independent promoter, with a 17 bp spacing between the –10 and –35 hexamer elements, we constructed derivatives with all possible combinations of bases at positions –15 and –14. Promoter activity is greatest when the ‘non-template’ strand carries T and G at positions –15 and –14, respectively. Promoter activity can be further enhanced by a second T and G at positions –17 and –16, respectively, immediately upstream of the first ‘TG motif’. Our results show that the base sequence of the DNA segment upstream of the –10 hexamer can make a significant contribution to promoter strength. Using published collections of characterised E.coli promoters, we have studied the frequency of occurrence of ‘TG motifs’ upstream of the promoters’ –10 elements. We conclude that correctly placed ‘TG motifs’ are found at over 20% of E.coli promoters.  相似文献   

15.
Natural transformation (NT) in bacteria is a complex process, including binding, uptake, transport and recombination of exogenous DNA into the chromosome, consequently generating genetic diversity and driving evolution. DNA processing protein A (DprA), which is distributed among virtually all bacterial species, is involved in binding to the internalized single-stranded DNA (ssDNA) and promoting the loading of RecA on ssDNA during NTs. Here we present the structures of DNA_processg_A (DprA) domain of the Helicobacter pylori DprA (HpDprA) and its complex with an ssDNA at 2.20 and 1.80 Å resolutions, respectively. The complex structure revealed for the first time how the conserved DprA domain binds to ssDNA. Based on structural comparisons and binding assays, a unique ssDNA-binding mode is proposed: the dimer of HpDprA binds to ssDNA through two small, positively charged binding pockets of the DprA domains with classical Rossmann folds and the key residue Arg52 is re-oriented to ‘open’ the pocket in order to accommodate one of the bases of ssDNA, thus enabling HpDprA to grasp substrate with high affinity. This mode is consistent with the oligomeric composition of the complex as shown by electrophoretic mobility-shift assays and static light scattering measurements, but differs from the direct polymeric complex of Streptococcus pneumoniae DprA–ssDNA.  相似文献   

16.
Methylglyoxal, a known endogenous and environmental mutagen, is a reactive α-ketoaldehyde that can modify both DNA and proteins. To investigate the possibility that methylglyoxal induces a crosslink between DNA and DNA polymerase, we treated a ‘primed template’ DNA and the exonuclease-deficient Klenow fragment (KFexo–) of DNA polymerase I with methylglyoxal in vitro. When the reaction mixtures were analyzed by SDS–PAGE, we found that methylglyoxal induced a DNA–KFexo– crosslink. The specific binding complex of KFexo– and ‘primed template’ DNA was necessary for formation of the DNA–KFexo– crosslink. Methylglyoxal reacted with guanine residues in the single-stranded portion of the template DNA. When 2′-deoxyguanosine was incubated with Nα-acetyllysine or N-acetylcysteine in the presence of methylglyoxal, a crosslinked product was formed. No other amino acid derivatives tested could generate a crosslinked product. These results suggest that methylglyoxal crosslinks a guanine residue of the substrate DNA and lysine and cysteine residues near the binding site of the DNA polymerase during DNA synthesis and that DNA replication is severely inhibited by the methylglyoxal-induced DNA–DNA polymerase crosslink.  相似文献   

17.
We used a yeast one-hybrid assay to isolate and characterize variants of the eukaryotic homing endonuclease I-PpoI that were able to bind a mutant, cleavage-resistant I-PpoI target or ‘homing’ site DNA in vivo. Native I-PpoI recognizes and cleaves a semi-palindromic 15-bp target site with high specificity in vivo and in vitro. This target site is present in the 28S or equivalent large subunit rDNA genes of all eukaryotes. I-PpoI variants able to bind mutant target site DNA had from 1 to 8 amino acid substitutions in the DNA–protein interface. Biochemical characterization of these proteins revealed a wide range of site–binding affinities and site discrimination. One-third of variants were able to cleave target site DNA, but there was no systematic relationship between site-binding affinity and site cleavage. Computational modeling of several variants provided mechanistic insight into how amino acid substitutions that contact, or are adjacent to, specific target site DNA base pairs determine I-PpoI site-binding affinity and site discrimination, and may affect cleavage efficiency.  相似文献   

18.
Cold shock proteins (CSP) belong to the family of single-stranded nucleic acid binding proteins with OB-fold. CSP are believed to function as ‘RNA chaperones’ and during anti-termination. We determined the solution structure of Bs-CspB bound to the single-stranded DNA (ssDNA) fragment heptathymidine (dT7) by NMR spectroscopy. Bs-CspB reveals an almost invariant conformation when bound to dT7 with only minor reorientations in loop β1–β2 and β3–β4 and of few aromatic side chains involved in base stacking. Binding studies of protein variants and mutated ssDNA demonstrated that Bs-CspB associates with ssDNA at almost diffusion controlled rates and low sequence specificity consistent with its biological function. A variation of the ssDNA affinity is accomplished solely by changes of the dissociation rate. 15N NMR relaxation and H/D exchange experiments revealed that binding of dT7 increases the stability of Bs-CspB and reduces the sub-nanosecond dynamics of the entire protein and especially of loop β3–β4.  相似文献   

19.
How do site-specific DNA-binding proteins find their targets?   总被引:17,自引:6,他引:11  
Essentially all the biological functions of DNA depend on site-specific DNA-binding proteins finding their targets, and therefore ‘searching’ through megabases of non-target DNA. In this article, we review current understanding of how this sequence searching is done. We review how simple diffusion through solution may be unable to account for the rapid rates of association observed in experiments on some model systems, primarily the Lac repressor. We then present a simplified version of the ‘facilitated diffusion’ model of Berg, Winter and von Hippel, showing how non-specific DNA–protein interactions may account for accelerated targeting, by permitting the protein to sample many binding sites per DNA encounter. We discuss the 1-dimensional ‘sliding’ motion of protein along non-specific DNA, often proposed to be the mechanism of this multiple site sampling, and we discuss the role of short-range diffusive ‘hopping’ motions. We then derive the optimal range of sliding for a few physical situations, including simple models of chromosomes in vivo, showing that a sliding range of ~100 bp before dissociation optimizes targeting in vivo. Going beyond first-order binding kinetics, we discuss how processivity, the interaction of a protein with two or more targets on the same DNA, can reveal the extent of sliding and we review recent experiments studying processivity using the restriction enzyme EcoRV. Finally, we discuss how single molecule techniques might be used to study the dynamics of DNA site-specific targeting of proteins.  相似文献   

20.
We have determined the structures of complexes between the phage MS2 coat protein and variants of the replicase translational operator in order to explore the sequence specificity of the RNA–protein interaction. The 19-nt RNA hairpins studied have substitutions at two positions that have been shown to be important for specific binding. At one of these positions, –10, which is a bulged adenosine (A) in the stem of the wild-type operator hairpin, substitutions were made with guanosine (G), cytidine (C) and two non-native bases, 2-aminopurine (2AP) and inosine (I). At the other position, –7 in the hairpin loop, the native adenine was substituted with a cytidine. Of these, only the G-10, C-10 and C-7 variants showed interpretable density for the RNA hairpin. In spite of large differences in binding affinities, the structures of the variant complexes are very similar to the wild-type operator complex. For G-10 substitutions in hairpin variants that can form bulges at alternative places in the stem, the binding affinity is low and a partly disordered conformation is seen in the electron density maps. The affinity is similar to that of wild-type when the base pairs adjacent to the bulged nucleotide are selected to avoid alternative conformations. Both purines bind in a very similar way in a pocket in the protein. In the C-10 variant, which has very low affinity, the cytidine is partly inserted in the protein pocket rather than intercalated in the RNA stem. Substitution of the wild-type adenosine at position –7 by pyrimidines gives strongly reduced affinities, but the structure of the C-7 complex shows that the base occupies the same position as the A-7 in the wild-type RNA. It is stacked in the RNA and makes no direct contact with the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号