共查询到20条相似文献,搜索用时 4 毫秒
1.
The differentiation of the neuromuscular junction is a multistep process requiring coordinated interactions between nerve terminals and muscle. Although innervation is not needed for muscle production, the formation of nerve-muscle contacts, intramuscular nerve branching, and neuronal survival require reciprocal signals from nerve and muscle to regulate the formation of synapses. Following the production of muscle fibers, clusters of acetylcholine receptors (AChRs) are concentrated in the central regions of the myofibers via a process termed “prepatterning”. The postsynaptic protein MuSK is essential for this process activating possibly its own expression, in addition to the expression of AChR. AChR complexes (aggregated and stabilized by rapsyn) are thus prepatterned independently of neuronal signals in developing myofibers. ACh released by branching motor nerves causes AChR-induced postsynaptic potentials and positively regulates the localization and stabilization of developing synaptic contacts. These “active” contact sites may prevent AChRs clustering in non-contacted regions and counteract the establishment of additional contacts. ACh-induced signals also cause the dispersion of non-synaptic AChR clusters and possibly the removal of excess AChR. A further neuronal factor, agrin, stabilizes the accumulation of AChR at synaptic sites. Agrin released from the branching motor nerve may form a structural link specifically to the ACh-activated endplates, thereby enhancing MuSK kinase activity and AChR accumulation and preventing dispersion of postsynaptic specializations. The successful stabilization of prepatterned AChR clusters by agrin and the generation of singly innervated myofibers appear to require AChR-mediated postsynaptic potentials indicating that the differentiation of the nerve terminal proceeds only after postsynaptic specializations have formed. 相似文献
2.
Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes 下载免费PDF全文
Rosemary F.L. Suswillo Behzad Javaheri Simon C.F. Rawlinson Gary P. Dowthwaite Lance E. Lanyon Andrew A. Pitsillides 《Cell biochemistry and function》2017,35(1):56-65
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load‐bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to examine these mechanisms. We exploited the fact that purified osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts and the role of gap junctions in such communication. We found that chick long bone osteocytes significantly increased basal proliferation of primary osteoblasts derived from an identical source (tibiotarsi). Using a gap junction inhibitor, 18β‐glycyrrhetinic acid, we also demonstrated that this osteocyte‐related increase in osteoblast proliferation was not reliant on functional gap junctions. In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial‐derived primary osteoblasts. We also showed that coincubated purified osteocytes exerted a marked inhibitory action on mechanical strain–related increases in proliferation of primary osteoblasts and that this action was abrogated in the presence of a gap junction inhibitor. These data reveal regulatory differences between purified osteocytes derived from functionally distinct bones and provide evidence for 2 mechanisms by which purified osteocytes communicate with primary osteoblasts to coordinate their activity. 相似文献
3.
John C. Igwe Xi Jiang Frane Paic Li Ma Douglas J. Adams Paul A. Baldock Carol C. Pilbeam Ivo Kalajzic 《Journal of cellular biochemistry》2009,108(3):621-630
Osteocytes are the most abundant osteoblast lineage cells within the bone matrix. They respond to mechanical stimulation and can participate in the release of regulatory proteins that can modulate the activity of other bone cells. We hypothesize that neuropeptide Y (NPY), a neurotransmitter with regulatory functions in bone formation, is produced by osteocytes and can affect osteoblast activity. To study the expression of NPY by the osteoblast lineage cells, we utilized transgenic mouse models in which we can identify and isolate populations of osteoblasts and osteocytes. The Col2.3GFP transgene is active in osteoblasts and osteocytes, while the DMP1 promoter drives green fluorescent protein (GFP) expression in osteocytes. Real‐time PCR analysis of RNA from the isolated populations of cells derived from neonatal calvaria showed higher NPY mRNA in the preosteocytes/osteocytes fraction compared to osteoblasts. NPY immunostaining confirmed the strong expression of NPY in osteocytes (DMP1GFP+), and lower levels in osteoblasts. In addition, the presence of NPY receptor Y1 mRNA was detected in cavaria and long bone, as well as in primary calvarial osteoblast cultures, whereas Y2 mRNA was restricted to the brain. Furthermore, NPY expression was reduced by 30–40% in primary calvarial cultures when subjected to fluid shear stress. In addition, treatment of mouse calvarial osteoblasts with exogenous NPY showed a reduction in the levels of intracellular cAMP and markers of osteoblast differentiation (osteocalcin, BSP, and DMP1). These results highlight the potential regulation of osteoblast lineage differentiation by local NPY signaling. J. Cell. Biochem. 108: 621–630, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
Mechanical stimulation of gap junctions in bone osteocytes is mediated by prostaglandin E2 总被引:2,自引:0,他引:2
Gap junction-mediated intercellular communications are thought to transduce the effects of mechanical strain from osteocytes to cells on the bone surface to initiate remodeling. To determine whether gap junctions may co-ordinate the effects of mechanical loading, osteocyte-like MLO-Y4 cells were exposed to fluid flow-imposed shear stress. After exposure of MLO-Y4 to fluid flow, intercellular coupling increased in direct proportion to shear stress level. Interestingly, this stimulation is further enhanced during the post-stress period, indicating that released factor(s) is likely to be involved. The conditioned medium obtained from the fluid flow treated MLO-Y4 cells induced an increase in the number of functional gap junctions and Cx43 protein when added to non-sheer-stressed cells. Fluid flow was found to induce prostaglandin F2 (PGE2) release and increase cyclooxygenase 2 (COX-2) expression. When PGE2 was depleted from the fluid flow conditioned medium, the stimulatory effect on gap junctions was significantly decreased. Addition of the COX inhibitor indomethacin partially blocked the stimulatory effects of mechanical strain on gap junctions. Together, these studies suggest that the stimulatory effect of fluid flow on gap junctions is mediated in part by de novo synthesis and release of PGE2. Gap junctions may serve as channels for the signals generated by osteocytes in response to mechanical loading. 相似文献
5.
6.
Yu-Heng Vivian Ma Liangcheng Xu Xueting Mei Kevin Middleton Lidan You 《Journal of cellular biochemistry》2019,120(5):7590-7601
Bone metastases occur in 65% to 75% of patients with advanced breast cancer and significantly worsen their survival and quality of life. We previously showed that conditioned medium (CM) from osteocytes stimulated with oscillatory fluid flow, mimicking bone mechanical loading during routine physical activities, reduced the transendothelial migration of breast cancer cells. Endothelial cells are situated at an ideal location to mediate signals between osteocytes in the bone matrix and metastasizing cancer cells in the blood vessels. In this study, we investigated the specific effects of flow-stimulated osteocytes on the interaction between endothelial cells and breast cancer cells in vitro. We observed that CM from flow-stimulated osteocytes reduced endothelial permeability by 15% and breast cancer cell adhesion onto endothelial monolayers by 18%. The difference in adhesion was abolished with anti-intercellular adhesion molecule 1 (ICAM-1) neutralizing antibodies. Furthermore, CM from endothelial cells conditioned in CM from flow-stimulated osteocytes significantly altered the gene expression in bone-metastatic breast cancer cells, as shown by RNA sequencing. Specifically, breast cancer cell expression of matrix metallopeptidase 9 (MMP-9) was downregulated by 62%, and frizzled-4 (FZD4) by 61%, when the osteocytes were stimulated with flow. The invasion of these breast cancer cells across Matrigel was also reduced by 47%, and this difference was abolished by MMP-9 inhibitors. In conclusion, we demonstrated that flow-stimulated osteocytes downregulate the bone-metastatic potential of breast cancer cells by signaling through endothelial cells. This provides insights into the capability of bone mechanical regulation in preventing bone metastases; and may assist in prescribing exercise or bone-loading regimens to patients with breast cancers. 相似文献
7.
A C Charles C C Naus D Zhu G M Kidder E R Dirksen M J Sanderson 《The Journal of cell biology》1992,118(1):195-201
Calcium signaling in C6 glioma cells in culture was examined with digital fluorescence video microscopy. C6 cells express low levels of the gap junction protein connexin43 and have correspondingly weak gap junctional communication as evidenced by dye coupling (Naus, C. C. G., J. F. Bechberger, S. Caveney, and J. X. Wilson. 1991. Neurosci. Lett. 126:33-36). Transfection of C6 cells with the cDNA encoding connexin43 resulted in clones with increased expression of connexin43 mRNA and protein and increased dye coupling, as well as markedly reduced rates of proliferation (Zhu, D., S. Caveney, G. M. Kidder, and C. C. Naus. 1991. Proc. Natl. Acad. Sci. USA. 88:1883-1887; Naus, C. C. G., D. Zhu, S. Todd, and G. M. Kidder. 1992. Cell Mol. Neurobiol. 12:163-175). Mechanical stimulation of a single cell in a culture of non-transfected C6 cells induced a wave of increased intracellular calcium concentration ([Ca2+]i) that showed little or no communication to adjacent cells. By contrast, mechanical stimulation of a single cell in cultures of C6 clones expressing transfected connexin43 cDNA induced a Ca2+ wave that was communicated to multiple surrounding cells, and the extent of communication was proportional to the level of expression of the connexin43 cDNA. These results provide direct evidence that intercellular Ca2+ signaling occurs via gap junctions. Ca2+ signaling through gap junctions may provide a means for the coordinated regulation of cellular function, including cell growth and differentiation. 相似文献
8.
9.
10.
Oocytes grow within ovarian follicles in which the oocyte is coupled to the surrounding granulosa cells by gap junctions. It was previously found that small growing oocytes isolated from juvenile mice and freed of their surrounding granulosa cells (denuded) lacked the ability to regulate their intracellular pH (pH(i)), did not exhibit the pH(i)-regulatory HCO(3)(-)/Cl(-) and Na(+)/H(+) exchange activities found in fully-grown oocytes, and had low pH(i). However, both exchangers became active as oocytes grew near to full size, and, simultaneously, oocyte pH(i) increased by approximately 0.25 pH units. Here, we show that, in the more physiological setting of the intact follicle, oocyte pH(i) is instead maintained at approximately 7.2 throughout oocyte development, and the growing oocyte exhibits HCO(3)(-)/Cl(-) exchange, which it lacks when denuded. This activity in the oocyte requires functional gap junctions, as gap junction inhibitors eliminated HCO(3)(-)/Cl(-) exchange activity from follicle-enclosed growing oocytes and substantially impeded the recovery of the oocyte from an induced alkalosis, implying that oocyte pH(i) may be regulated by pH-regulatory exchangers in granulosa cells via gap junctions. This would require robust HCO(3)(-)/Cl(-) exchange activity in the granulosa cells, which was confirmed using oocytectomized (OOX) cumulus-oocyte complexes. Moreover, in cumulus-oocyte complexes with granulosa cells coupled to fully-grown oocytes, HCO(3)(-)/Cl(-) exchange activity was identical in both compartments and faster than in denuded oocytes. Taken together, these results indicate that growing oocyte pH(i) is controlled by pH-regulatory mechanisms residing in the granulosa cells until the oocyte reaches a developmental stage where it becomes capable of carrying out its own homeostasis. 相似文献
11.
Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. 总被引:19,自引:0,他引:19 下载免费PDF全文
T H Steinberg R Civitelli S T Geist A J Robertson E Hick R D Veenstra H Z Wang P M Warlow E M Westphale J G Laing et al. 《The EMBO journal》1994,13(4):744-750
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells. 相似文献
12.
13.
The retinoids, the natural or synthetic derivatives of Vitamin A (retinol), are essential for the normal development of prostate and have been shown to modulate prostate cancer progression in vivo as well as to modulate growth of several prostate cancer cell lines. 9-cis-retinoic acid and all-trans-retinoic acid are the two most important metabolites of retinol. Gap junctions, formed of proteins called connexins, are ensembles of intercellular channels that permit the exchange of small growth regulatory molecules between adjoining cells. Gap junctional communication is instrumental in the control of cell growth. We examined the effect of 9-cis-retinoic acid and all-trans retinoic acid on the formation and degradation of gap junctions as well as on junctional communication in an androgen-responsive prostate cancer cell line, LNCaP, which expressed retrovirally introduced connexin32, a connexin expressed by the luminal cells and well-differentiated cells of prostate tumors. Our results showed that 9-cis-retinoic acid and all-trans retinoic acid enhanced the assembly of connexin32 into gap junctions. Our results further showed that 9-cis-retinoic acid and all-trans-retinoic acid prevented androgen-regulated degradation of gap junctions, post-translationally, independent of androgen receptor mediated signaling. Finally, our findings showed that formation of gap junctions sensitized connexin32-expressing LNCaP cells to the growth modifying effects of 9-cis-retinoic acid, all-trans-retinoic acid and androgens. Thus, the effects of retinoids and androgens on growth and the formation and degradation of gap junctions and their function might be related to their ability to modulate prostate growth and cancer. 相似文献
14.
Anand RJ Dai S Rippel C Leaphart C Qureshi F Gribar SC Kohler JW Li J Stolz DB Sodhi C Hackam DJ 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(1):G109-G119
Enterocytes exist in close association with tissue macrophages, whose activation during inflammatory processes leads to the release of nitric oxide (NO). Repair from mucosal injury requires the migration of enterocytes into the mucosal defect, a process that requires connexin43 (Cx43)-mediated gap junction communication between adjacent enterocytes. Enterocyte migration is inhibited during inflammatory conditions including necrotizing enterocolitis, in part, through impaired gap junction communication. We now hypothesize that activated macrophages inhibit gap junctions of adjacent enterocytes and seek to determine whether NO release from macrophages was involved. Using a coculture system of enterocytes and macrophages, we now demonstrate that "activation" of macrophages with lipopolysaccharide and interferon reduces the phosphorylation of Cx43 in adjacent enterocytes, an event known to inhibit gap junction communication. The effects of macrophages on enterocyte gap junctions could be reversed by treatment of macrophages with the inducible nitric oxide synthase (iNOS) inhibitor l-Lysine omega-acetamidine hydrochloride (l-NIL) and by incubation with macrophages from iNOS(-/-) mice, implicating NO in the process. Activated macrophages also caused a NO-dependent redistribution of connexin43 in adjacent enterocytes from the cell surface to an intracellular location, further suggesting NO release may inhibit gap junction function. Treatment of enterocytes with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) markedly inhibited gap junction communication as determined using single cell microinjection of the gap junction tracer Lucifer yellow. Strikingly, activated macrophages inhibited enterocyte migration into a scraped wound, which was reversed by l-NIL pretreatment. These results implicate enterocyte gap junctions as a target of the NO-mediated effects of macrophages during intestinal inflammation, particularly where enterocyte migration is impaired. 相似文献
15.
Kandler K 《Seminars in cell & developmental biology》1997,8(1):43-51
During embryonic development, gap junctions link cells into functional communication compartments characterized by a common development fate. Increasing evidence for gap junctions between immature neurons suggest that similar mechanisms may also be at work in the developing vertebrate brain, where gap junction-coupled neuronal assemblies often precede synaptically-linked functional networks. Recent experiments in the developing mammalian neocortex demonstrated the presence of gap-junction mediated second messenger waves, similar to those in non-neuronal cells. The primary function of neuronal gap junctions, therefore, might be to coordinate biochemical activity, rather than to act as purely electrical synapses. Thus, gap junctions may serve to amplify neuronal activity produced by weak synaptic stimulation. 相似文献
16.
Cardiac gap junctions were reconstituted into liposomes. To determine if reconstitution resulted in membrane channel formation, we developed an assay for channel function that used a liposome-entrapped peroxidase to detect entry of a substrate into the liposome. The data demonstrate, for the first time, that reconstituted gap junctions from heart are capable of channel-forming activity in artificial membranes. 相似文献
17.
Al-Dujaili SA Lau E Al-Dujaili H Tsang K Guenther A You L 《Journal of cellular biochemistry》2011,112(9):2412-2423
Fatigue loading causes a spatial distribution of osteocyte apoptosis co-localized with bone resorption spaces peaking around microdamage sites. Since osteocytes have been shown to regulate osteoclast formation and activity, we hypothesize that osteocyte apoptosis regulates osteoclastogenesis. In this study, we used serum-starvation to mimic reduced nutrient transport in microdamaged bone and induce apoptosis in MLO-Y4 osteocyte-like cells; conditioned medium was used to apply soluble factors released by apoptotic osteocytes (aOCY) to healthy non-apoptotic MLO-Y4 cells. Osteoclast precursor (RAW264.7 monocyte) migration and differentiation were assessed in the presence of conditioned media (CM) from: (A) aOCY, (B) osteocytes treated with apoptosis conditioned medium (i.e., healthy osteocytes in the presence of apoptosis cues; apoptosis CM-treated osteocytes (atOCY)), and (C) osteocytes treated with non-apoptosis conditioned medium (i.e., healthy osteocytes in the absence of apoptosis cues; non-apoptosis CM-treated osteocytes (natOCY)). Receptor activator for nuclear factor-κB ligand (RANKL), macrophage colony stimulating factor (M-CSF), vascular endothelial growth factor (VEGF) and osteoprotegerin (OPG) mRNA, and protein expression were measured. Our findings indicate that soluble factors released by aOCY and atOCY promoted osteoclast precursor migration (up to 64% and 24% increase, respectively) and osteoclast formation (up to 450% and 265% increase, respectively). Osteoclast size increased up to 233% in the presence of aOCY and atOCY CM. Recruitment, formation and size were unaltered by natOCY. RANKL mRNA and protein expression were upregulated only in aOCY, while M-CSF and VEGF increased in atOCY. Addition of RANKL-blocking antibody abolished aOCY-induced osteoclast precursor migration and osteoclast formation. VEGF and M-CSF blocking antibodies abolished atOCY-induced osteoclastogenesis. These findings suggest that aOCY directly and indirectly (through atOCY) initiate targeted bone resorption by regulating osteoclast precursor recruitment and differentiation. 相似文献
18.
During the life cycle of a membrane protein its molecular structure may change and for aggregated proteins this process may be observed on the supramolecular level. Here we demonstrate that this is the case for gap junction channels which maintain cell-cell communication. Freshly synthesized connexins are integrated as hexamers (connexons) into the plasma membrane where they form plaques after pairing with connexons of an attached cell. We inhibited protein trafficking by applying the fungal metabolite brefeldin A (BFA), quantified cell-cell coupling by calcein transfer and fluorescence-activated flow cytometry, and examined the degradation and formation of gap junction plaques by indirect immunofluorescence and immunogold labeling. Under control conditions 50% of the detected plaques were ubiquitylated and less than 10% showed a two-dimensional crystalline packing. One hour after BFA reversal about 60% of the plaques were crystalline and ubiquitylation dropped to 14%. Label for ubiquitin was predominantly found on non-crystalline plaques. We, therefore, conclude that newly formed gap junction plaques are of crystalline morphology which changes to a pleomorphic structure when individual channels are modified during their aging process. This dynamic in plaque morphology correlates with channel inactivation and plaque ubiquitylation. 相似文献
19.
Molecular organization of gap junctions 总被引:4,自引:0,他引:4
Highly purified gap junction fractions from heart and liver contain a single major protein component. The proteins isolated from different organs have apparent molecular weights of 26,000-30,000. Peptide mapping and partial sequencing show close homology of the hepatic junctional protein of different species. In contrast, no homologies can be detected when polypeptides from different tissues of the rat were compared by peptide mapping. Preliminary results from partial sequencing, however, show that the amino terminal regions of the liver and heart proteins are related to one another. Sequencing has not yet revealed any such homologies between the lens and the other junction proteins. 相似文献
20.
Dhein S 《Peptides》2002,23(9):1701-1709
Gap junction channels are low resistance pathways allowing an action potential to propagate from one cell to the neighboring. Moreover, small molecules (<1000 Da) may pass the channel providing a possibility for metabolic coupling, growth and differentiation control of a cell by its surrounding. Antiarrhythmic peptides can enhance the conductivity of the channels while other peptides, angiotensin or extracellular loop peptides, reduce intercellular communication. On the other hand, peptides like angiotensin II or endothelin-1 can increase expression of certain gap junction channel proteins and, thereby, may affect intercellular coupling chronically. Thus, intercellular communication can be controlled using peptide drugs. 相似文献