首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic mechanism underlying six palatability properties of cooked rice and three physico-chemical traits was dissected in 66 BC3F2 chromosome segment substitution lines (CSSLs), using a complete linkage map in three successive years. The CSSLs showed transgressive segregation for all traits studied. Significant correlation was detected among most palatability traits. A total of 25 QTLs for the nine traits were identified on nine chromosomes, and many QTLs affecting different quality traits were mapped in the same regions. Six QTLs—qLT-8 for luster, qTD-6 and qTD-8 for tenderness, qIVOE-6 and qIVOE-8 for integrated value of organoleptic evaluation, and qAC-8 for amylose content—were repeatedly detected across the 3 years. Phenotypic values were significantly different between the recurrent parent, cultivar Asominori, and the CSSLs harboring any of the six QTL alleles across the three environments, indicating that these six QTLs were non-environment-specific and could be used for marker-assisted selection in rice quality improvement.  相似文献   

2.
The objective of this study was to identify quantitative trait loci (QTLs) associated with grain quality in rice. Two hundred eighty-five BC2F2 families developed from an interspecific cross between cv IR64 and Oryza rufipogon (IRGC 105491) were evaluated for 14 seed quality traits. A total of 165 markers consisting of 131 single sequence repeats and 34 restriction fragment length polymorphism markers were used to create a genetic linkage map spanning the 12 rice chromosomes. Twenty-three independent QTLs were identified using single point analysis, interval mapping, and composite interval mapping. These loci consisted of one QTL for filled rough/total rough rice ratio, two for grain density, one for percentage of de-husked rice grains, two for percentage of green rice grains, three for percentage of damaged-yellow rice grains, two for percentage of red rice grains, one for milled rice recovery, three for head rice recovery, four for broken rice grains, two for crushed rice grains, one for amylose content, and one for gel consistency. For most of the QTLs identified in this study, the O. rufipogon-derived allele contributed an undesirable effect. For amylose content and gel consistency, the O. rufipogon allele may be useful in an IR64 background, depending on the cultural preferences of the consumer. Careful selection against the regions associated with negative effects will be required to avoid unwanted grain quality characteristics during the development of improved varieties for yield and yield components using introgressions from O. rufipogon.Communicated by D. Mackill  相似文献   

3.
Improved root system architecture can enhance agronomic performance by increasing water and nitrogen (N) acquisition efficiency. However, little is known about interaction between root system architecture and agronomic performance under field environments. To gain a better understanding about the genetic basis of these relationships, we evaluated a set of chromosome segment substitution lines (CSSLs) derived from crosses between a tropical japonica rice cultivar ‘Curinga’ and a wild species Oryza rufipogon accession IRGC105491. Root system architectural traits were investigated using the CSSLs at 40 days old seedlings using the root basket method under hydroponic conditions, and agronomic performances were also tested under field conditions with different N treatments. Agronomic performances were computed as the ratio of a trait value under low to high N treatments, including grain yield and biomass yield as nitrogen-deficiency tolerance (NDT) traits. Root architecture and NDT trait QTLs were mapped using 238 SNP marker loci. A total of 13 QTLs for root system architectural, NDT and morpho-physiological traits were identified on chromosomes 1, 3, 4, 5, 7, 8, 9, 10 and 12. Interestingly, a QTL for deeper root number was identified the region of SNP markers between id1012330 and id1021697 on chromosome 1 under hydroponic conditions overlapped with a QTL for NDT trait of relative grain yield (qRGY1). These results suggest that deeper root trait is helpful to maintain grain yield under nitrogen-deficient conditions. The QTL associated root architecture could potentially be used in future rice-breeding efforts to increase agronomic performance under nitrogen-deficient conditions.  相似文献   

4.
Using mixed-model-based composite interval mapping and conditional statistical methods, we studied quantitative trait loci (QTLs) with epistatic effects and QTLs by environment interaction effects for rice seed set percent (SSP), filled grain number per plant (FGP), and panicle length (PL). A population of 241 recombinant inbred lines was used which was derived from a cross between “Zhenshan 97” and “Minghui 63.” Its linkage map included 221 molecular markers. Our QTL analysis detected 28, 25, and 32 QTLs for SSP, FGP, and PL, respectively. Each QTL explained 1.37%∼13.19% of the mean phenotypic variation. A comparison of conventional and conditional mapping provided information about the genetic control system involved in the synthetic process of SSP, FGP, and PL at the level of individual QTLs. Conditional QTLs with reduced (or increased) effects were identified for SSP, which were significantly influenced by FGP or PL. Some QTLs could express independently for the given traits, thereby providing possibilities for simultaneous improvement of SSR and PL, and SSR and FGP. Epistasis was more sensitive to environmental conditions than were additive effects.  相似文献   

5.
Chlorophyll (Chl) content is an important agronomic trait directly affecting the photosynthetic rate. Using a high-density genetic map of 132 recombinant inbred lines (RILs) derived from the cross between 93-11 and PA64s, we detected the quantitative trait loci (QTLs) for Chl content of the top three leaves under two nitrogen (N) conditions at two developmental stages. A total of 32 main-effect QTLs located on chromosomes 1, 4, 5, 6, 7, 8, and 12 were identified, and these QTLs individually accounted for 6.0–20.8?% of the total phenotypic variation. A major QTL qFCC7 L affecting the Chl content under low N condition was identified, and its positive allele came from PA64s. This QTL might be associated with the ability to tolerate low-N stress in rice. The chromosomal segment substitution line (CSSL) with the corresponding segment from PA64s had a higher SPAD value and photosynthetic rate than 93-11 and showed a lower specific leaf area (SLA). We performed a fine-mapping using a BC4F2 population via marker-assisted backcross and finally mapped this QTL to a 124.5 kb interval on the long arm of chromosome 7. Candidate gene analysis showed that there were sequence variations and expression differences in the predicted candidate gene between the two parents. These results suggest that the QTL qFCC7 L may be useful for breeding the rice varieties with higher photosynthetic rate and grain yield.  相似文献   

6.
Grain traits are important agronomic attributes with the market value as well as milling yield of bread wheat. In the present study, quantitative trait loci (QTL) regulating grain traits in wheat were identified. Data for grain area size (GAS), grain width (GWid), factor form density (FFD), grain length-width ratio (GLWR), thousand grain weight (TGW), grain perimeter length (GPL) and grain length (GL) were recorded on a recombinant inbred line derived from the cross of NW1014?×?HUW468 at Meerut and Varanasi locations. A linkage map of 55 simple sequence repeat markers for 8 wheat chromosomes was used for QTL analysis by Composite interval mapping. Eighteen QTLs distributed on 8 chromosomes were identified for seven grain traits. Of these, five QTLs for GLWR were found on chromosomes 1A, 6A, 2B, and 7B, three QTLs for GPL were located on chromosomes 4A, 5A and 7B and three QTLs for GAS were mapped on 5D and 7D. Two QTLs were identified on chromosomes 4A and 5A for GL and two QTLs for GWid were identified on chromosomes 7D and 6A. Similarly, two QTLs for FFD were found on chromosomes 1A and 5D. A solitary QTL for TGW was identified on chromosome 2B. For several traits, QTLs were also co-localized on chromosomes 2B, 4A, 5A, 6A, 5D, 7B and 7D. The QTLs detected in the present study may be validated for specific crosses and then used for marker-assisted selection to improve grain quality in bread wheat.  相似文献   

7.
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.  相似文献   

8.

Key message

Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice.

Abstract

Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
  相似文献   

9.
A BC2F2 population developed from an interspecific cross between Oryza sativa (cv IR64) and O. rufipogon (IRGC 105491) was used in an advanced backcross QTL analysis to identify and introduce agronomically useful genes from this wild relative into the cultivated gene pool. The objectives of this study were: (1) to identify putative yield and yield component QTLs that can be useful to improve the elite cultivar IR64; (2) to compare the QTLs within this study with previously reported QTLs in rice as the basis for identifying QTLs that are stable across different environments and genetic backgrounds; and (3) to compare the identified QTLs with previously reported QTLs from maize to examine the degree of QTL conservation across the grass family. Two hundred eighty-five families were evaluated in two field environments in Indonesia, with two replications each, for 12 agronomic traits. A total of 165 markers consisting of 131 SSRs and 34 RFLPs were used to construct the genetic linkage map. By employing interval mapping and composite interval mapping, 42 QTLs were identified. Despite its inferior performance, 33% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield and yield components in the IR64 background. Twenty-two QTLs (53.4%) were located in similar regions as previously reported rice QTLs, suggesting the existence of stable QTLs across genetic backgrounds and environments. Twenty QTLs (47.6%) were exclusively detected in this study, uncovering potentially novel alleles from the wild, some of which might improve the performance of the tropical indica variety IR64. Additionally, several QTLs for plant height, grain weight, and flowering time detected in this study corresponded to homeologous regions in maize containing previously detected maize QTLs for these traits.  相似文献   

10.
Grain size traits are critical agronomic traits which directly determine grain yield, but the genetic bases of these traits are still not well understood. In this study, a total of 154 chromosome segment substitution lines (CSSLs) population derived from a cross between a japonica variety Koshihikari and an indica variety Nona Bokra was used to investigate grain length (GL), grain width (GW), length-width ratio (LWR), grain perimeter (GP), grain area (GA), and thousand grain weight (TGW) under four environments. QTL mapping analysis of six grain size traits was performed by QTL IciMapping 4.2 with an inclusive composite interval mapping (ICIM) model. A total of 64 QTLs were identified for these traits, which mapped to chromosomes 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12 and accounted for 1.6%–27.1% of the total phenotypic variations. Among these QTLs, thirty-six loci were novel and seven QTLs were identified under four environments. One locus containing the known grain size gene, qGL3/GL3.1/OsPPKL1, also have been found. Moreover, five pairs of digenic epistatic interactions were identified except for GL and GP. These findings will facilitate fine mapping of the candidate gene and QTL pyramiding to genetically improve grain yield in rice.  相似文献   

11.
以轮回亲本籼稻品种9311(Oryz a sativa ssp. indica ‘Yangdao 6’)为对照, 选用132个亲本间有多态性的SSR标记, 对以粳稻品种日本晴(Oryz a sativa ssp. japonica 'Nipponbare’)为供体的5个高代回交置换系的农艺性状及置换片段进行分析。5个置换系在粒长、粒宽、千粒重、剑叶长、株高及落粒性等方面与籼稻品种9311之间有极显著差异, 其余性状与籼稻品种9311间的差异不显著; 从置换系中检测出8个置换片段, 总长度为236.0 cM, 平均长度为29.5 cM; 从置换片段上检出包括2个千粒重、1个粒长、1个粒宽、1个剑叶长、1个株高和1个落粒性共7个QTLs , 分别分布在水稻第1、3、5、6和第10染色体上。其中, 第1染色体上控制剑叶长的QTL和第6染色体上控制株高的QTL可能是新发现的QTLs。实验结果进一步丰富了置换系群体的数量和质量, 也为QTLs 的精细定位及分子设计育种奠定了基础。  相似文献   

12.
5个籼稻背景的高代回交置换系的置换片段分析   总被引:1,自引:0,他引:1  
以轮回亲本籼稻品种9311(Oryza sativassp.indica‘Yangdao6’)为对照,选用132个亲本间有多态性的SSR标记,对以粳稻品种日本晴(Oryzasativassp.japonica‘Nipponbare’)为供体的5个高代回交置换系的农艺性状及置换片段进行分析。5个置换系在粒长、粒宽、千粒重、剑叶长、株高及落粒性等方面与籼稻品种9311之间有极显著差异,其余性状与籼稻品种9311间的差异不显著;从置换系中检测出8个置换片段,总长度为236.0cM,平均长度为29.5cM;从置换片段上检出包括2个千粒重、1个粒长、1个粒宽、1个剑叶长、1个株高和1个落粒性共7个QTLs,分别分布在水稻第1、3、5、6和第10染色体上。其中,第1染色体上控制剑叶长的QTL和第6染色体上控制株高的QTL可能是新发现的QTLs。实验结果进一步丰富了置换系群体的数量和质量,也为QTLs的精细定位及分子设计育种奠定了基础。  相似文献   

13.
An advanced backcross QTL study was performed in pepper using a cross between the cultivated species Capsicum annuum cv. Maor and the wild C. frutescens BG 2816 accession. A genetic map from this cross was constructed, based on 248 BC(2) plants and 92 restriction fragment length polymorphism (RFLP) markers distributed throughout the genome. Ten yield-related traits were analyzed in the BC(2) and BC(2)S(1) generations, and a total of 58 quantitative trait loci (QTLs) were detected; the number of QTLs per trait ranged from two to ten. Most of the QTLs were found in 11 clusters, in which similar QTL positions were identified for multiple traits. Unlike the high percentage of favorable QTL alleles discovered in wild species of tomato and rice, only a few such QTL alleles were detected in BG 2816. For six QTLs (10%), alleles with effects opposite to those expected from the phenotype were detected in the wild species. The use of common RFLP markers in the pepper and tomato maps enabled possible orthologous QTLs in the two species to be determined. The degree of putative QTL orthology for the two main fruit morphology traits-weight and shape-varied considerably. While all eight QTLs identified for fruit weight in this study could be orthologous to tomato fruit weight QTLs, only one out of six fruit shape QTLs found in this study could be orthologous to tomato fruit shape QTLs.  相似文献   

14.
Resistance to the disease septoria tritici blotch of wheat (Triticum aestivum L.), caused by the fungus Mycosphaerella graminicola (Fuckel.) J. Schrot in Cohn (anamorph Septoria tritici Roberge in Desmaz.) was investigated in a doubled-haploid (DH) population of a cross between the susceptible winter wheat cultivar Savannah and the resistant cultivar Senat. A molecular linkage map of the population was constructed including 76 SSR loci and 244 AFLP loci. Parents and DH progeny were tested for resistance to single isolates of M. graminicola in a growth chamber at the seedling stage, and to an isolate mixture at the adult plant stage, in field trials. A gene located at or near the Stb6 locus mapping to chromosome 3A provided seedling resistance to IPO323. Two complementary genes, mapping to chromosome 3A, one of which was the IPO323 resistance gene, were needed for resistance to the Danish isolate Ris?97-86. In addition, a number of minor loci influenced the expression of resistance in the growth chamber. In the field, four QTLs for resistance to septoria tritici blotch were detected. Two QTLs, located on chromosomes 3A and 6B explained 18.2 and 67.9% of the phenotypic variance in the mean over two trials. Both these QTLs were also detected at the seedling stage with isolate Ris?97-86, whereas isolate IPO323 only detected the QTL on 3A. Additionally, two QTLs identified in adult plants on chromosomes 2B and 7B were not detected at the seedling stage. Four QTLs were detected for plant height located on chromosomes 2B, 3A, 3B and on a linkage group not assigned to a chromosome. The major QTLs on 3A and on the unassigned linkage group were consistent over two trials, and the QTL on 3A seemed to be linked to a QTL for septoria tritici blotch resistance.  相似文献   

15.
Quantitative trait loci (QTLs) for the apparent quality of brown rice under high temperatures during ripening were analyzed using chromosomal segment substitution lines. Segments from the indica cultivar Habataki were substituted into a japonica cultivar with a Sasanishiki background. We found the following two QTLs for increasing grain quality in the Habataki allele on chromosome 3: (1) qTW3-2, located near the marker RM14702, decreased the percentage of total white immature (TWI) grains, and (2) qRG3-2, located near RM3766, increased the percentage of regular grains. The effects of these two QTLs were more obvious under high-temperature ripening conditions; hence, these loci are considered QTLs not only for reducing TWI grains but also for increasing high-temperature tolerance. Additionally, we found two QTLs, i.e., qTW3-1 and qRG3-1, responsible for reduced grain quality near RM14314 on chromosome 3. Although the QTL for narrow grains in the Habataki allele qNG3 was genetically linked to qTW3-2, the effect was only slightly significant, and the length/width ratio of qNG3-carrying grains was within the range observed in widely grown japonica cultivars. Incorporating the Habataki region, including qRG3-2 and qTW3-2 but not qTW3-1 and qRG3-1, in addition to previously reported grain quality QTLs in breeding japonica cultivars will improve high-temperature tolerance and grain quality.  相似文献   

16.
Traditional basmati rice varieties are very low yielding due to their poor harvest index, tendency to lodging and increasing susceptibility to foliar diseases; hence there is a need to develop new varieties combining the grain quality attributes of basmati with high yield potential to fill the demand gap. Genetic control of basmati grain and cooking quality traits is quite complex, but breeding work can be greatly facilitated by use of molecular markers tightly linked to these traits. A set of 209 recombinant inbred lines (RILs) developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342, were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length (GL), grain breadth (GB), grain length to breadth ratio (LBR), cooked kernel elongation ratio (ELR), amylose content (AC), alkali spreading value (ASV) and aroma. A framework molecular linkage map was constructed using 110 polymorphic simple sequence repeat (SSR) markers distributed over the 12 rice chromosomes. A number of QTLs, including three for GL, two for GB, two for LBR, three for aroma and one each for ELR, AC and ASV were mapped on seven different chromosomes. While location of majority of these QTLs was consistent with the previous reports, one QTL for GL on chromosomes 1, and one QTL each for ELR and aroma on chromosomes 11 and 3, respectively, are being reported here for the first time. Contrary to the earlier reports of monogenic recessive inheritance, the aroma in Pusa 1121 is controlled by at least three genes located on chromosomes 3, 4 and 8, and similar to the reported association of badh2 gene with aroma QTL on chromosome 8, we identified location of badh1 gene in the aroma QTL interval on chromosome 4. A discontinuous 5 + 3 bp deletion in the seventh exon of badh2 gene, though present in all the RILs with high aroma, was not sufficient to impart this trait to the rice grains as many of the RILs possessing this deletion showed only mild or no aroma expression. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Samba mahsuri (BPT 5204) is a cultivar of the medium slender grain indica variety of Oryza sativa grown across India for its high yield and quality. However, this cultivar is susceptible to several diseases and pests including rice blast. The analysis of near isogenic lines indicated the presence of a resistance gene, Pi-1(t) in the donor cultivar C101LAC which is highly resistant to the rice blast fungus Magnaporthe grisea (M. grisea). C101LAC was crossed with susceptible indica rice cultivar (BPT 5204) to generate the mapping population. A mendelian segregation ratio of 3:1 for resistant to susceptible F2 plants using bulk segregation analysis confirmed the presence of a major gene pi-1(t) by simple sequence repeats marker RM224 to the highly virulent blast isolate DRR 001.  相似文献   

18.
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.  相似文献   

19.
Drought is a major limitation for rice production in rainfed ecosystems. Identifying quantitative trait loci (QTLs) linked to drought resistance provides opportunity to breed high yielding rice varieties suitable for drought-prone areas. Although considerable efforts were made in mapping QTLs associated with drought-resistance traits in rice, most of the studies involved indica × japonica crosses and hence, the drought-resistance alleles were contributed mostly by japonica ecotypes. It is desirable to look for genetic variation within indica ecotypes adapted to target environment (TE) as the alleles from japonica ecotype may not be expressed under lowland conditions. A subset of 250 recombinant inbred lines (RILs) of F8 generation derived from two indica rice lines (IR20 and Nootripathu) with contrasting drought-resistance traits were used to map the QTLs for morpho-physiological and plant production traits under drought stress in the field in TE. A genetic linkage map was constructed using 101 polymorphic PCR-based markers distributed over the 12 chromosomes covering a total length of 1,529 cM in 17 linkage groups with an average distance of 15.1 cM. Composite interval mapping analysis identified 22 QTLs, which individually explained 4.8–32.2% of the phenotypic variation. Consistent QTLs for drought-resistance traits were detected using locally adapted indica ecotypes, which may be useful for rainfed rice improvement.  相似文献   

20.
Chromosome segment substitution lines (CSSLs) are a powerful alternative for locating quantitative trait loci (QTL), analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S. weedy rice accession ‘PSRR-1’ with genome-wide coverage in an adapted rice cultivar ‘Bengal’ background. The majority of the CSSLs carried a single defined weedy rice segment with an average introgression segment of 2.8 % of the donor genome. QTL mapping results for several agronomic and domestication traits from the CSSL population were compared with those obtained from two recombinant inbred line (RIL) populations involving the same weedy rice accession. There was congruence of major effect QTLs between both types of populations, but new and additional QTLs were detected in the CSSL population. Although, three major effect QTLs for plant height were detected on chromosomes 1, 4, and 8 in the CSSL population, the latter two escaped detection in both RIL populations. Since this was observed for many traits, epistasis may play a major role for the phenotypic variation observed in weedy rice. High levels of shattering and seed dormancy in weedy rice might result from an accumulation of many small effect QTLs. Several CSSLs with desirable agronomic traits (e.g. longer panicles, longer grains, and higher seed weight) identified in this study could be useful for rice breeding. Since weedy rice is a reservoir of genes for many weedy and agronomic attributes, the CSSL library will serve as a valuable resource to discover latent genetic diversity for improving crop productivity and understanding the plant domestication process through cloning and characterization of the underlying genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号