首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Neurosecretory cells of the supraoptic-neurohypophysial system of normal mice were investigated with the use of the cytochemical reaction for thiamine pyrophosphatase (TPPase) at the ultrastructural level. In the hypothalamic perikarya dense lead precipitates occur within the cisterns of the mature face of the Golgi apparatus, these being the cisterns that give rise to neurosecretory granules (NSG). Smooth endoplasmic reticulum is occasionally confluent with TPPase-positive Golgi cisterns. Along axons, within swellings, and within terminals distinct profiles of TPPase-positive tubules and cisterns are revealed, apparently part of a network of axonal smooth endoplasmic reticulum (AER). Some NSG appear to be confluent with AER. NSG with TPPase-positive tubular protrusions (likely vestiges of AER) are seen. Apart from reaction product (lead precipitate), the AER often contains an electron dense substance optically similar to that of NSG. TPPase-containing AER is often associated with mitochondria. Profiles of electron-lucent, precipitate-free tubules and cisterns are occasionally seen alongside reactive AER. Optimal TPPase activity in the AER occurs at pH 7.0–7.4, whereas in the Golgi complex intense marking is in the range of pH 6.0–8.5. A faint peppering of precipitate occasionally appears in the AER in controls (incubation medium without substrate), but neither in density nor in extent is this comparable to the reaction product seen after incubation in the presence of TPP. Preliminary comparison has been made between the AER revealed by the TPPase reaction, and that visualized after heavy metal impregnation according to the method of Alonso and Assenmacher (1978a). The nature of the close association between NSG and AER, and the possible roles of this membrane system in neurosecretory cells is discussed.Abbreviations AER axonal smooth endoplasmic reticulum - NSG neurosecretory granules - TPPase thiamine pyrophosphatase - SON supraoptic nucleus Research supported in part by a grant from the Israel Academy of Sciences to M.C.We thank Mrs. Ilana Sabnay for excellent technical assistance  相似文献   

2.
Summary A quantitative ultrastructural study was performed to determine the changes in the neurosecretory neurons of the supraoptic (SON) and circularis (NC) nuclei following 4–24 h of water deprivation (WD) and subsequent rehydration (12 and 24 h). In both nuclei, the amount of direct soma-somatic contact increased throughout WD, apparently by retraction of fine glial processes from between the cells. Rehydration reversed these changes. The number of smaller (<1600 Å) neurosecretory granules (NSG's) decreased in both nuclei at 4 h of WD but returned to control levels by 24 h of WD and remained so during rehydration. Larger (<1600 Å) NSG's decreased in number at 4 h of WD in SON and then returned to control levels by 24 h of WD and remained the same throughout rehydration. In NC, these NSG's did not change in number with WD, but significantly increased between 12 and 24 h of rehydration. No cells with dilated rough endoplasmic reticulum were seen in NC during this study. In SON, however, the percentage of such cells increased at 4 and 12 h of dehydration only to decrease to control levels at 24 h of dehydration and throughout rehydration. Lysosomes decreased at 4 h of dehydration in SON and returned to control levels thereafter. In NC, lysosomes tended to decrease with dehydration and increase with rehydration. These findings indicate that detectable morphological changes take place in the course of alterations in hydration state that are well within the physiological range.Supported by NIH Grant NS 09140. The use of the electron microscope facility of the College of Osteopathic Medicine is gratefully acknowledged. Thanks are due W.E. Armstrong and W.A. Gregory for helpful comments, and R. Meyers, A. Ridener, and R. Herbold for technical assistance  相似文献   

3.
4.
Summary The axonal flow of neurosecretory elementary granules has been studied in the paraventricular neurons of the rat (PVN), with the help of three techniques: light microscopy, radioautography after labelling with 35S-L-cysteine, and electron microscopy.Colchicine treatment does not alter the uptake of 35S cysteine in the PVN but the flow of labelled neurosecretory material towards the neurohypophysis is interrupted. Interruption of the axonal flow is also evidenced by the stagnation of neurosecretory granules at the periphery of the neuronal cytoplasm and by the presence of numerous axonal swellings, heavily loaded with neurosecretory granules and often containing abnormal elongated granules, surrounded by a single membrane, oriented more or less parallely to the long axis of the axons. Other cell organelles and neurotubules are not altered. The present experiments bring further evidence of the arrest by colchicine of the axonal flow of secretory granules without apparent changes of the neurotubules.This work was supported by a grant (1970/1971) from the Belgian National Fund for Scientific Research (J. F.-D), and by grant No 1120 from the Belgian National Fund for Medical Research (P. D).The authors wish to thank Mrs. A.-M. Hunninck-Couck for her devoted and skillful technical assistance, and are endebted to Dr. J. C. Heuson for kindly supplying the rats.  相似文献   

5.
Summary The lumbar sympathetic ganglia and the interganglionic interconnecting nerves of untreated rats and rats treated with Colchicine (COL) or Vinblastine (VIN) were studied with the help of the Falck-Hillarp fluorescence technique and electron microscopy. Both in untreated and drug treated rats there was a good correlation between the distribution of noradrenaline (NA) specific fluorescence and granular vesicles supporting the previous view that the granular vesicles represent the main intraneuronal NA storage sites. The granular vesicles were present both in the cell bodies—mainly in the peripheral part of the cytoplasm— and in the axons of untreated rats. After local application of COL or VIN on the ganglia there was a marked increase in fluorescence intensity and number of granular vesicles in many cell bodies. Often increased number of granular vesicles were found in the neighbourhood of the Golgi apparatus, in which region only few such vesicles are found in untreated rats. In some cell bodies high numbers of granular vesicles could be found all over the cytoplasm.When applied locally to axons the mitosis inhibitors caused a marked accumulation of fluorescence and granular vesicles—and other cell organelles like mitochondria and tubules of the endoplasmic reticulum-proximal to the site of application.A prominent feature both in cell bodies and axons of drug treated rats were large bundles of neurofilaments running through the cytoplasm. In the axons these filaments were often localized to the central part of the axon and surrounded by vesicles and tubules. Microtubules, on the other hand, which are rather numerous in cell bodies and axons of untreated rats seemed to be reduced in number after COL or VIN treatment, especially in those axons in which large amounts of subcellular organelles had accumulated.The present findings are discussed with respect to intraneuronal transport of NA and possible mechanisms behind this transport. It is suggested that the accumulation of fluorescence and granular vesicles after application of mitosis inhibitors is due to an interruption of the centrifugal transport of NA granules. The increased numbers of granular vesicles in the neighbourhood of the Golgi apparatus suggest that granular vesicles are produced in this part of the cytoplasm. This does not exclude a local formation of granular vesicles in other parts of the neuron. Furthermore, the possibility is discussed that the interruption of the transport is related to the increased number of neurofilaments and a possible decrease or disarrangement of microtubules. This discussion is based on previous suggestions that microtubules are involved in intracellular transport mechanisms and on recent findings that COL and VIN bind to proteins specific for microtubules.This study has been supported by grants from the Swedish Medical Research Council (B70-14X-2887-01; B71-14X-2887-02A; B71-14P-3262-01 A; B70-14X-2207-04; B71-14X-2207-05A; K70-40P-3045-01A), from Magnus Bergwalls Foundation, from Wilhelm and Martina Lundgrens Foundation, from the Medical Faculty, University of Göteborg.For generous supply of vinblastine (Velbe®) we thank Eli Lilly Ltd.The skilful technical assistance of Mrs Kirsten Collin, Mrs Waldraut Hiort and Mr Pär-Anders Larsson is gratefully acknowledged.  相似文献   

6.
Summary The intra-axonal organization of the smooth endoplasmic reticulum was studied in the neurohypophysis of rats during and after water deprivation. Parallel to conventional electron microscopy, the material was treated with a double impregnation staining technique specifically designed to contrast the intracellular membranous system. In conventionally stained ultrathin sections from severely dehydrated rats most axons appeared to be free of membranous organelles, whereas corresponding axons treated with the double-impregnation technique generally exhibited a highly developed system of smooth endoplasmic reticulum. In axonal endings, both techniques revealed a profusion of microvesicles in intimate relationship with tubular elements of the smooth endoplasmic reticulum. In short-term (12 h) rehydrated rats, a similarly developed system of smooth endoplasmic reticulum was still observed at all axonal levels with both procedures. After 24 to 48 h of rehydration the tubules of the smooth endoplasmic reticulum exhibited, in double impregnated material, numerous dilatations which resembled the adjacent neurosecretory granules. In conventionally stained ultrathin sections, an accumulation of electron dense material occurred within tubules of the smooth endoplasmic reticulum in the more proximal axonal segments, while in the more terminal segments, which contained numerous elongated granules, membrane continuity was frequently observed between newly formed granules and the smooth endoplasmic reticulum. After 7 days of rehydration the general pattern of the axonal smooth endoplasmic reticulum was comparable to that in untreated rats. These results are discussed in the light of a suggested involvement of the axonal smooth endoplasmic reticulum in the non-granular transport of neurosecretory material in connection with (1) storage in distally formed granules, and (2) release via microvesicles. Acknowledgements: The authors wish to express their gratitude to Mrs. M. Balmefrézol for her skillful technical assistance  相似文献   

7.
Summary The fine structure of the testicular interstitium was studied in normal adult golden hamsters sacrificed in the reproductive season (spring and summer) and in the winter. The Leydig cells in the reproductively active testes contain abundant endoplasmic reticulum (ER) and numerous mitochondria. The ER occurs in the form of flattened cisternae and tubules, the former prevailing. The cisternae are extremely extensive and are partly granular and partly agranular, their ends being continuous with the tubular reticulum. Mitochondria intervening between the cisternae are closely associated with the agranular portions of the latter. Adjacent to the Golgi complex and continuous with the centrosome a unique filamentous body with a dense laminar core is often observed. In the regressive testes, the Leydig cells show a great reduction of cytoplasmic volume and a remarkable decline of the organelles, especially agranular tubules. The possible functional significance of the tubular and cisternal ER with the associated mitochondria is discussed in relation to the biosynthesis of androgens. Macrophages appear to constitute another important population of the interstitial cell clusters.This study was supported in part by a grant from the National Science Council, the Republic of China  相似文献   

8.
9.
R. Nagai  S. Fukui 《Protoplasma》1981,109(1-2):79-89
Summary Cytoplasmic streaming in the stalk ofAcetabularia, ryukyuensis at the vegetative stage was reversibly inhibited by cytochalasin B (cB) of 50 g/ml and irreversibly by N-Ethylmaleimide (NEM) above concentrations of 0.25 mM.After the endoplasm and the chloroplasts were pushed forward one end of the stalk by gentle centrifugation at about 500 × g for 3 minutes, numerous ectoplasmic striations remainedin situ in the stalk cortex. The striations ran in parallel with the longitudinal axis of the stalk at unequal intervals. The endoplasm streamed back only along these striations.By combining centrifugation and a double chamber technique, the endoplasm and the cortex of the stalk were treated separately with CB or NEM. CB treatment of the cortex arrested streaming; when treatment was restricted to the endoplasm, streaming continued at an normal rate. NEM treatment restricted to the cortex permitted normal streaming rates. Treatment restricted to the moving endoplasm inhibited streaming.These results suggest that microfilaments and a moiety, possibly myosin, play an active role in the streaming. Microfilaments must reside in the cortex, especially in the ectoplasmic striations, while the putative myosin must reside in the moving endoplasm.  相似文献   

10.
Because leucokinins stimulate diuresis in some insects, we wished to identify the neurosecretory cells in Manduca sexta that might be a source of leucokinin-like neurohormones. Immunostaining was done at various stages of development, using an antiserum to leucokinin IV. Bilateral pairs of neurosecretory cells in abdominal ganglia 3–7 of larvae and adults are immunoreactive; these cells project via the ipsilateral ventral nerves to the neurohemal transverse nerves. The immunoreactivity and size of these lateral cells greatly increases in the pharate adult, and this change appears to be related to a period of intensive diuresis occurring a few days before adult eclosion. Relationships of these neurons to cells that are immunoreactive to a M. sexta diuretic hormone were also investigated. Diuretic hormone and leucokinin immunoreactivity are co-localized in the lateral neurosecretory cells and their neurohemal projections. A median pair of leucokinin-immunoreactive, and a lateral pair of diuretic hormone-immunoreactive neurons in the larval terminal abdominal ganglion project to neurohemal release sites within the cryptonephridium. The immunoreactivity of these cells is lost as the cryptonephridium is eliminated during metamorphosis. This loss appears to be related to the change from the larval to adult pattern of diuresis.  相似文献   

11.
The posterior neurosecretory cell (PNC) group in the brain of Rhodnius prolixus is composed of five ultrastructurally identical cells. The PNC were examined in the unfed fifth instar and at seven stages (from 15 min to 14 days) after activation was initiated by feeding. Each stage examined revealed successive changes in morphology which can be related to the synthesis, maturation, storage and transport of neurosecretory material. It is suggested, in particular, that the lysosomal system (dense bodies and multivesicular bodies) may play a role in the maturation of the secretory granules.  相似文献   

12.
Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with beta-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins.  相似文献   

13.
14.
Summary The innervation pattern of the intermediate lobe of the skate (Raja radiata) was studied with histological and fluorescence histochemical methods. Neurosecretory fibres, stained with i.a. pseudo-iso-cyanine, were found running in bundles in the central parts of the cell cords. They terminated partly around the perinuclear parts of the intermedia cells, partly around the apices of the cells close to the vascular walls.A catecholamine innervation of the intermedia was also established. Catecholaminecontaining fibres with the appearance of nerve terminals were found around the intermedia cell apices close to the vessels. In some specimens, catecholamine fibres also seemed to terminate at the perinuclear parts of the cells.Thus it is possible, judging solely from structural relations, that both the cell body (the synthesis pole) and the cell apex (the release pole) receive a dual innervation. Recent experimental evidence indicates that the release of MSH from the pars intermedia is controlled by catecholamine fibres, but as yet there is only structural evidence for a special control of hormone synthesis.This study was supported by grants from the Swedish Natural Science Research Council (No. 99-35 and 2126-2) and was carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-712-05 and B70-14X-56-06).  相似文献   

15.
Summary The effects of chlorpromazine (cpz) and tetracaine (tc) on the rapid axonal transport of neurosecretory material (NSM) in the hypothalamo-neurohypophysial system was investigated. Following subarachnoidal injection of these drugs, the incorporation of (35S) cysteine into proteins of the supraoptic nucleus was slightly depressed. The protein-bound radioactivity in the posterior pituitary was markedly lowered in experimental rats which indicates a partial blockage of the rapid axonal transport of NSM along the hypothalamoneurohypophysial tract. Both cpz and tc induced an increase in the number of mitochondria and profiles of granular endoplasmic reticulum. The axons in the infundibulum and neurohypophysis were enlarged by dammed organelles, indicating a blockage of axonal transport. There was an increased number of microvesicles, often arranged in a crystalloid pattern, in the terminals. The number and distribution of neurotubuli and neurofilaments were not changed. A possible stimulatory effect of cpz on the release of NSM from the neural lobe is assumed Possible mechanisms for the action of mitotic inhibitors, transquilizers and local anesthetics are discussed.The present work was supported by grants from Svenska Livforsäkringsbolags Fond, H. Hiertas stiftelse, Magnus Bergwalls stiftelse, The Swedish Medical Research Council No. B73-12X-2543-05B, Statens naturvetenskapliga forskningsråd No. 2535-8 and from the Medical Faculty, University of Göteborg. We are indebted to Mrs. Margareta Andersson, Mrs. Wally Holmberg, Mrs. Elisabeth Norström and Mrs. Ulla Svedin for excellent technical assistance, and to Miss Gull Grönstedt for careful secretarial work.  相似文献   

16.
Summary This study was undertaken to determine whether the numerous cytoplasmic tubules (CT) in the apical cytoplasm of goldfish hindgut absorptive cells are directly involved in the endocytotic transport of macromolecules into the cells, or whether they are derived from the intracellular membrane components. The absorptive cells were exposed to horseradish peroxidase (HRP)-containing medium in organ culture and subsequently fixed and prepared for electron microscopy. Analysis revealed that 5 sec after exposure, many vesicular structures, including coated vesicles, were labelled with reaction product whereas almost all CT were negative. After a 1-min exposure, reaction product was detected in about 11 % of the CT, and thereafter, the percentage increased to about 95% after 15 min exposure. As labelled CT increased in number, the number of densely labelled vacuoles with attached CT also increased. CT connected to vacuoles with a peripheral margin of dense reaction product were always HRP-positive, whereas those connected to vacuoles which were not distinctly labelled were themselves also devoid of HRP reaction product. This indicated that the labelling of CT was closely associated with the labelling of the inner surface of the vacuolar membrane. These results indicate that CT are probably formed by a budding off from these vacuoles, rather than being directly involved in endocytosis.  相似文献   

17.
18.
Summary The lower spinal cord including the caudal neurosecretory system of the pike (Esox lucius) was investigated by means of light and electron microscopy and also with the fluorescence histochemical method of Falck and Hillarp for the visualization of monoamines. A system of perikarya displaying a specific green fluorescence of remarkably high intensity is disclosed in the basal part of the ventrolateral and lateral ependymal lining of the central canal. The area corresponding to the upper half of the urophysis has most cells; their number decreases caudally and cranially. A considerable number of their beaded neurites reach the neurosecretory neurons by different routes but are only occasionally present in the actual neurohemal region. An intensely fluorescent dendritic process is sometimes observed terminating with a bulbous enlargement at the ependymal surface in the central canal. Besides small, electron lucid vesicles in the terminal parts of the axons, the neurons contain numerous large dense-core vesicles which can apparently take up and store 5-hydroxydopa (5-OH-dopa) and 5-hydroxydopamine (5-OH-DA). These neurons are thought to be adrenergic and to contain a primary catecholamine, possibly noradrenaline.The varicosities of the adrenergic terminals are repeatedly observed contiguous to some of the neurosecretory axons, the membrane distance at places of contacts generally ranging from 150–200 Å. Another type of nerve terminals that contain only small empty vesicles, also after pretreatment with 5-OH-dopa or 5-OH-DA, are frequent among the neurosecretory neurons. These axons establish synaptic contacts with membrane thickenings on most of the neurosecretory neurons. Thus it seems that the neurosecretory neurons are innervated by neurons morphologically similar to cholinergic neurons and that part of them receive an adrenergic innervation, which supports the view hat the caudal neurosecretory cells do not constitute a functionally homogeneous population.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius Gesellschaft zur Förderung der Wissenschaften, Hamburg.Supported by the Swedish Natural Research Council (No. 99-35). This work was in part carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-56-06 and B70-14X-712-05).Supported by the Deutsche Forschungsgemeinschaft and USPHS Research Grant TW 00295-02.  相似文献   

19.
Summary Colchicine (0.1 M) or vinblastine (0.01 M) was locally applied on the sciatic nerves of newborn rats. Both colchicine and vinblastine caused reversible disappearance of axonal neurotubules and appearance of increased amounts of neurofilaments at the site of application. Subsequent morphogenesis of myoneural junctions in the tibialis anterior muscle was studied after histochemical demonstration of acetylcholinesterase (AChE; E.C. 3.1.1.7) and non-specific cholinesterase (Ns. ChE; E.C. 3.1.1.8) activity in the myoneural area.Development of the postsynaptic muscle plasma membrane of the myoneural junction was arrested in the ipsilateral, but not in the contralateral control side, for a period of about three weeks following treatment with the test substances. After this delay the myoneural morphogenesis continued normally and neurotubules were seen in the axoplasm.Since disruption of neurotubules is likely to cause blockage of the intratubular axoplasmic transport system, it seems possible that the neurotrophic influence responsible for the development of the postsynaptic muscle membrane is mediated through a secretory product transported along axons intratubularly to the nerve endings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号