首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat grains contain Triticum aestivum xylanase inhibitor (TAXI) proteins which inhibit microbial xylanases, some of which are used in cereal based food industries. These inhibitors may play a role in plant defence. Among the TAXI isoforms described so far, TAXI-II displays a deviating inhibition specificity pattern. Here, we report on the molecular identity of TAXI-II and the basis of its inhibition specificity. Three candidate TAXI-II encoding sequences were isolated and recombinantly expressed in Pichia pastoris. To identify TAXI-II, the resulting proteins were tested against glycoside hydrolase family (GHF) 11 xylanases of Aspergillus niger (ANX) and Bacillus subtilis (BSX). One of these proteins (rTAXI-IB) inhibited both enzymes, like natural TAXI-I. The other candidates (rTAXI-IIA and rTAXI-IIB) showed an inhibition pattern typical for natural TAXI-II, only clearly inhibiting BSX. Comparative analysis of these highly similar sequences with distinct inhibition activity patterns, combined with information on the structural basis for ANX inhibition by TAXI-I [S. Sansen, C.J. De Ranter, K. Gebruers, K. Brijs, C.M. Courtin, J.A. Delcour, A. Rabijns, Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I, J. Biol. Chem. 279 (2004) 36022-36028], indicated a crucial role for Pro294 of TAXI-IIA and Gln376 of TAXI-IIB in determining the reduced inhibition activity towards ANX. Consequently, single point mutants rTAXI-IIA[P294L] and rTAXI-IIB[Q376H], both displaying the Leu/His combination corresponding to TAXI-I, were able to inhibit ANX. These results show that TAXI-II inhibition specificity bears on the identity of two key residues at positions 294 and 376, which are involved in the interaction at the -2 glycon subsite and the active site of GHF 11, respectively.  相似文献   

2.
Wheat endoxylanase inhibitor TAXI-I inhibits microbial glycoside hydrolase family 11 endoxylanases. Crystallographic data of an Aspergillus niger endoxylanase-TAXI-I complex showed His374 of TAXI-I to be a key residue in endoxylanase inhibition. Its role in enzyme-inhibitor interaction was further investigated by site-directed mutagenesis of His374 into alanine, glutamine or lysine. Binding kinetics and affinities of the molecular interactions between A. niger, Bacillus subtilis, Trichoderma longibrachiatumendoxylanases and wild-type TAXI-I and TAXI-I His374 mutants were determined by surface plasmon resonance analysis. Enzyme-inhibitor binding was in accordance with a simple 1 : 1 binding model. Association and dissociation rate constants of wild-type TAXI-I towards the endoxylanases were in the range between 1.96 and 36.1 x 10(4)m(-1) x s(-1) and 0.72-3.60 x 10(-4) x s(-1), respectively, resulting in equilibrium dissociation constants in the low nanomolar range. Mutation of TAXI-I His374 to a variable degree reduced the inhibition capacity of the inhibitor mainly due to higher complex dissociation rate constants (three- to 80-fold increase). The association rate constants were affected to a smaller extent (up to eightfold decrease). Substitution of TAXI-I His374 therefore strongly affects the affinity of the inhibitor for the enzymes. In addition, the results show that His374 plays a critical role in the stabilization of the endoxylanase-TAXI-I complex rather than in the docking of inhibitor onto enzyme.  相似文献   

3.
Triticum aestivum endoxylanase inhibitors (TAXIs) are wheat proteins that inhibit family 11 endoxylanases commonly used in different (bio)technological processes. Here, we report on the identification of the TAXI-I gene which encodes a mature protein of 381 amino acids with a calculated molecular mass of 38.8 kDa. When expressed in Escherichia coli, the recombinant protein had the specificity and inhibitory activity of natural TAXI-I, providing conclusive evidence that the isolated gene encodes an endoxylanase inhibitor. Bioinformatical analysis indicated that no conserved domains nor motifs common to other known proteins are present. Sequence analysis revealed similarity with a glycoprotein of carrot and with gene families in Arabidopsis thaliana and rice, all with unknown functions. Our data indicate that TAXI-I belongs to a newly identified class of plant proteins for which a molecular function as glycoside hydrolase inhibitor can now be suggested.  相似文献   

4.
Two genes encoding family 11 endo-beta-1,4-xylanases (XylA, XylB) from Fusarium graminearum were cloned and expressed in Escherichia coli. The amount of active endoxylanase in the cytoplasmic soluble fraction was considerably improved by varying different expression parameters, including host strain and temperature during induction. Both recombinant endoxylanases showed a temperature optimum around 35 degrees C and neutral pH optima (around pH 7 and 8 for XylB and XylA, respectively). For the first time this allowed one to test endoxylanases of a phytopathogenic organism for inhibition by proteinaceous endoxylanase inhibitors TAXI and XIP. Whereas XylA and XylB were inhibited by TAXI-I, no inhibition activity could be detected upon incubation with XIP-I. The insensitivity of both F. graminearum endoxylanases towards XIP is surprising, since the latter is typically active against endoxylanases produced by (aerobic) fungi. As F. graminearum is an important phytopathogen, these findings have implications for the role of endoxylanase inhibitors in plant defence.  相似文献   

5.
Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors. The present paper focuses on the TAXI-type proteins and deals with their structural characteristics and the identification, characterisation and heterologous expression of a TAXI gene from wheat. In addition, to shed light on the mechanism by which TAXI-type endoxylanase inhibitors work, the enzyme specificity, the optimal conditions for maximal inhibition activity, the molar complexation ratio and the inhibition kinetics of the inhibitors are explained and the effect of mutations of an endoxylanase on the inhibition by TAXIs is discussed.  相似文献   

6.
7.
The filamentous fungus Penicillium funiculosum produces a mixture of modular and non-modular xylanases belonging to different glycoside hydrolase (GH) families. In the present study, we heterologously expressed the cDNA encoding GH11 xylanase B (XYNB) and studied the enzymatic properties of the recombinant enzyme. Expression in Escherichia coli led to the partial purification of a glutathione fusion protein from the soluble fraction whereas the recombinant protein produced in Pichia pastoris was successfully purified using a one-step chromatography. Despite O-glycosylation heterogeneity, the purified enzyme efficiently degraded low viscosity xylan [K(m)=40+/-3 g l(-1), V(max)=16.1+/-0.8 micromol xylose min(-1) and k(cat)=5405+/-150 s(-1) at pH 4.2 and 45 degrees C] and medium viscosity xylan [K(m)=34.5+/-3.2 g l(-1), V(max)=14.9+/-1.0 micromol xylose min(-1)k(cat)=4966+/-333 s(-1) at pH 4.2 and 45 degrees C]. XYNB was further tested for its ability to interact with wheat xylanase inhibitors. The xylanase activity of XYNB produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 89.7+/-8.5 and 2.9+/-0.3 nM, respectively, whereas no inhibition was detected with TAXI-II. Physical interaction of both TAXI-I and XIP-I with XYNB was observed using titration curves across a pH range 3-9.  相似文献   

8.
TAXI (Triticum aestivum xylanase inhibitor) proteins are present in wheat flour and are known to inhibit glycosyl hydrolase family 11 endoxylanases, enzymes which are commonly applied in grain processing. Here, we describe the PCR-based molecular identification of genes encoding endoxylanase inhibitors HVXI and SCXI, the TAXI-like proteins from barley (Hordeum vulgare) and rye (Secale cereale) respectively. The HVXI coding sequence encodes a mature protein of 384 amino acids preceded by a 19 amino acid long signal sequence. SCXI-II/III has an open reading frame encoding a signal peptide of 21 amino acids and a mature protein of 375 amino acids. As for TAXI-I, no introns were detected in the untranslated regions and coding sequences identified. These newly identified sequences allowed us to perform a multiple sequence alignment with TAXI-I and similar proteins. Rice TAXI-type proteins clustered together with the cereal endoxylanase inhibitors. Dicotyledonous proteins with sequence similarity to TAXI-I, including the tomato xyloglucan-specific endoglucanase inhibiting protein, formed a different clade. The TAXI-type proteins may hence be part of a superfamily of proteins all involved in plant responses to biotic or abiotic stress and for which a function as glycosyl hydrolase inhibitors can be suggested. The chromosomal localization of the TAXI-I gene identified on wheat chromosome 3B, of the SCXI-II/III gene identified on rye chromosome 6R, and the presence of a cluster of TAXI-like genes on rice chromosome 1, allowed us to assign the location of TAXI-like genes to the wheat-rye translocation area 3BL/6RL characterized by RFLP markers XGlb33 and Xpsr454 and isozyme Est-5. In rice, RFLP marker C1310S corresponds to a TAXI-like protein encoding sequence.Communicated by P. Langridge  相似文献   

9.
Actinobacteria isolates from Brazilian Cerrado soil were evaluated for their ability to produce enzymes of the cellulolytic and xylanolytic complex using lignocellulose residual biomass. Preliminary semiquantitative tests, made in Petri plates containing carboxymethylcellulose and beechwood xylan, indicated 11 potential species producing enzymes, all belonging to the genus Streptomyces. The species were subsequently grown in pure substrates in submerged fermentation and analyzed for the production of enzymes endoglucanase, β-glucosidase, endoxylanase, and β-xylosidase. The best results were obtained for endoxylanase enzyme production with Streptomyces termitum(UFLA CES 93). The strain was grown on lignocellulose biomass (bagasse, straw sugarcane, and cocoa pod husk) that was used in natura or acid pretreated. The medium containing sugarcane bagasse in natura favored the production of the endoxylanase that was subsequently optimized through an experimental model. The highest enzyme production 0.387?U?mL?1, (25.8 times higher), compared to the lowest value obtained in one of the trials, was observed when combining 2.75% sugar cane bagasse and 1.0?g?L?1 of yeast extract to the alkaline medium (pH 9.7). This is the first study using S. termitum as a producer of endoxylanase.  相似文献   

10.
Abstract A neutral endoxylanase from a culture filtrate of Aspergillus nidulans grown on oat spelt xylan was purified to apparent homogeneity. The purified enzyme showed a single band on SDS-PAGE with a molecular mass of 22,000 and had an isoelectric point of 6.4. The enzyme was a non-debranching endoxylanase highly specific for xylans and completely free from cellulolytic activity. The xylanase showed an optimum activity at pH 5.5 and 62°C and had a K m of 4.2 mg oat spelt xylan per ml and a V max of 710 μmol min−1 (mg protein)−1.  相似文献   

11.
An affinity chromatography method has been developed for purification of endoxylanase inhibitors concentrated by cation exchange chromatography from wheat whole meal and is based on immobilisation of a Bacillus subtilis family 11 endoxylanase on N-hydroxysuccinimide activated Sepharose 4 Fast Flow. When followed by high-resolution cation exchange chromatography, the purification of seven TAXIs, Triticum aestivum L. endoxylanase inhibitors was achieved so extending the number of such proteins known to date (TAXI I and II). Based on their inhibition activities against a B. subtilis family 11 and an Aspergillus niger family 11 endoxylanase, six TAXI I- and only one TAXI II-like inhibitor could be distinguished. The first type of endoxylanase inhibitor is active against both endoxylanases and the second type only has significant activity against the B. subtilis endoxylanase.  相似文献   

12.
A rice XIP-type inhibitor was purified by affinity chromatography with an immobilized Aspergillus aculeatus family 10 endoxylanase. Rice XIP is a monomeric protein, with a molecular mass of ca. 32 kDa and a pI of ca. 5.6. Its N-terminal amino acid sequence was identical to that of a rice chitinase homologue, demonstrating the difficulty when using sequence information to differentiate between endoxylanase inhibitors and (putative) chitinases in rice. Rice XIP inhibited different endoxylanases to a varying degree. In particular, it most strongly inhibited family 10 endoxylanases from A. niger and A. oryzae, while several family 11 enzymes from Bacillus subtilis, A. niger and Trichoderma sp. were not sensitive to inhibition. The above mentioned A. aculeatus endoxylanase was not inhibited either, although gel permeation chromatography revealed that it complexed rice XIP in a 1:1 molar stoichiometric ratio.  相似文献   

13.
An extremely thermophilic bacterial isolate that produces a high titer of thermostable endoxylanase and β-xylosidase extracellularly in an inducible manner was identified as Geobacillus thermodenitrificans TSAA1. The distinctive features of this strain are alkalitolerance and halotolerance. The endoxylanase is active over a broad range of pH (5.0–10.0) and temperatures (30–100 °C) with optima at pH 7.5 and 70 °C, while β-xylosidase is optimally active at pH 7.0 and 60 °C. The T 1/2 values of the endoxylanase and β-xylosidase are 30 min at 80 °C, and 180 min at 70 °C, respectively. The endoxylanase activity is stimulated by dithiothreitol, but inhibited strongly by EDAC and Woodward’s reagent K. N-BS and DEPC strongly inhibited β-xylosidase. MALDI-ToF (MS/MS) analysis of tryptic digest of β-xylosidase revealed similarity with that of G. thermodenitrificans NG 80-2, and suggested that this belongs to the GH 52 glycosyl hydrolase super family. The action of endoxylanase on birch wood xylan and agro-residues such as wheat bran and wheat straw liberated xylooligosaccharides similar to endoxylanases of the family 10 glycoside hydrolases, while the enzyme preparation having both endoxylanase and β-xylosidase liberated xylose as main hydrolysis product.  相似文献   

14.
Papaya fruit softening, endoxylanase gene expression, protein and activity   总被引:3,自引:0,他引:3  
Papaya ( Carica papaya L.) cell wall matrix polysaccharides are modified as the fruit starts to soften during ripening and an endoxylanase is expressed that may play a role in the softening process. Endoxylanase gene expression, protein amount and activity were determined in papaya cultivars that differ in softening pattern and in one cultivar where softening was modified by the ethylene receptor inhibitor 1-methylcyclopropene (1-MCP). Antibodies to the endoxylanase catalytic domain were used to determine protein accumulation. The three papaya varieties used in the study, 'Line 8', 'Sunset', and 'Line 4-16', differed in softening pattern, respiration rate, ethylene production and showed similar parallel relationships during ripening and softening in endoxylanase expression, protein level and activity. When fruit of the three papaya varieties showed the respiratory climacteric and started to soften, the level of endoxylanase gene expression increased and this increase was related to the amount of endoxylanase protein at 32 kDa and its activity. Fruit when treated at less than 10% skin yellow stage with 1-MCP showed a significant delay in the respiratory climacteric and softening, and reduced ethylene production, and when ripe was firmer and had a 'rubbery' texture. The 1-MCP-treated fruit that had the 'rubbery' texture showed suppressed endoxylanase gene expression, protein and enzymatic activity. Little or no delay occurred between endoxylanase gene expression and the appearance of activity during posttranslational processing from 65 to 32 kDa. The close relationship between endoxylanase gene expression, protein accumulation and activity in different varieties and the failure of the 1-MCP-treated fruit to fully soften, supported de novo synthesis of endoxylanase, rapid posttranslation processing and a role in papaya fruit softening.  相似文献   

15.
An endo-beta-1,4-xylanase (1,4-beta-D-xylan xylanoxydrolase, EC 3.2.1.8) present in culture filtrates of Sporotrichum thermophile ATCC 34628 was purified to homogeneity by Q-Sepharose and Sephacryl S-200 column chromatographies. The enzyme has a molecular mass of 25,000 Da, an isoelectric point of 6.7, and is optimally active at pH 5 and at 70 degrees C. Thin-layer chromatography (TLC) analysis showed that endo-xylanase liberates mainly xylose (Xyl) and xylobiose (Xyl2) from beechwood 4-O-methyl-D-glucuronoxylan, O-acetyl-4-O-methylglucuronoxylan and rhodymenan (a beta-(1-->4)-beta(1-->3)-xylan). Also, the enzyme releases an acidic xylo-oligosaccharide from 4-O-methyl-D-glucuronoxylan, and an isomeric xylotetraose and an isomeric xylopentaose from rhodymenan. Analysis of reaction mixtures by high performance liquid chromatography (HPLC) revealed that the enzyme cleaves preferentially the internal glycosidic bonds of xylooligosaccharides, [1-3H]-xylooligosaccharides and xylan. The enzyme also hydrolyses the 4-methylumbelliferyl glycosides of beta-xylobiose and beta-xylotriose at the second glycosidic bond adjacent to the aglycon. The endoxylanase is not active on pNPX and pNPC. The enzyme mediates a decrease in the viscosity of xylan associated with a release of only small amounts of reducing sugar. The enzyme is irreversibly inhibited by series of omega-epoxyalkyl glycosides of D-xylopyranose. The results suggest that the endoxylanase from S. thermophile has catalytic properties similar to the enzymes belonging to family 11.  相似文献   

16.
Y E Lee  S E Lowe    J G Zeikus 《Applied microbiology》1993,59(9):3134-3137
The gene encoding endoxylanase (xynA) from Thermoanaerobacterium saccharolyticum B6A-RI was cloned and expressed in Escherichia coli. A putative 33-amino-acid signal peptide, which corresponded to the N-terminal amino acids, was encoded by xynA. An open reading frame of 3,471 bp, corresponding to 1,157 amino acid residues, was found, giving the xynA gene product a molecular mass of 130 kDa. xynA from T. saccharolyticum B6A-RI had strong similarity to genes from family F beta-glycanases. The temperature and pH optimum for the activity of the cloned endoxylanase were 70 degrees C and 5.5, respectively. The cloned endoxylanase A was stable at 75 degrees C for 60 min and displayed a specific activity of 227.4 U/mg of protein on oat spelt xylan. The cloned xylanase was an endo-acting enzyme.  相似文献   

17.
An endoxylanase (β-1,4-xylan xylanohydrolase, EC 3.2.1.8) was purified from the culture filtrate of a strain of Aspergillus versicolor grown on oat wheat. The enzyme was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-75. The purified enzyme was a monomer of molecular mass estimated to be 19 kDa by SDS-PAGE and gel filtration. The enzyme was glycoprotein with 71% carbohydrate content and exhibited a pI of 5.4. The purified xylanase was specific for xylan hydrolysis. The enzyme had a K m of 6.5 mg ml−1 and a V max of 1440 U (mg protein)−1.  相似文献   

18.
A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52 % amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55 % of the maximum activity when assayed at 40–75 °C, 23 % at 20 °C, 16 % at 85 °C, and even 8 % at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62 % xylanase activity and stability at the concentration of 3–30 % (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5–19.0, 15.3–19.0, 21.9–27.7, and 28.2–31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.  相似文献   

19.
A rice XIP-type inhibitor was purified by affinity chromatography with an immobilized Aspergillus aculeatus family 10 endoxylanase. Rice XIP is a monomeric protein, with a molecular mass of ca. 32?kDa and a pI of ca. 5.6. Its N-terminal amino acid sequence was identical to that of a rice chitinase homologue, demonstrating the difficulty when using sequence information to differentiate between endoxylanase inhibitors and (putative) chitinases in rice. Rice XIP inhibited different endoxylanases to a varying degree. In particular, it most strongly inhibited family 10 endoxylanases from A. niger and A. oryzae, while several family 11 enzymes from Bacillus subtilis, A. niger and Trichoderma sp. were not sensitive to inhibition. The above mentioned A. aculeatus endoxylanase was not inhibited either, although gel permeation chromatography revealed that it complexed rice XIP in a 1:1 molar stoichiometric ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号