首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of NH4 + and NO3 uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the Vmax of NH4 + uptake was higher than that of NO3 uptake. The Km of NH4 + uptake and Km of NO3 uptake differed not significantly. When both NH4 + and NO3 were present, the Vmax for NH4 + uptake became slightly higher, and the Km for NH4 + uptake remained in the same order. Under these conditions the NO3 uptake was almost totally inhibited over the whole range of concentrations used (10–1000 μM total N). This inhibition by NH4 + occurred during the first two hours after addition. ei]{gnA C}{fnBorstlap}  相似文献   

2.
Activation of Ca2+ and cAMP-dependent Cl conductances by extracellular ATP was studied using the whole-cell patch clamp technique. Immediately after addition of extracellular ATP (10 m), activation of wholecell Cl current exhibiting delayed inactivation and activation kinetics at hyperpolarizing and depolarizing voltages, respectively, was observed. After prolonged activation, the kinetic characteristics of the ATP-induced Cl current became time- and voltage-independent. When applied to the later phase of the ATP-activated whole-cell current, the disulfonic acid stilbene DIDS (200 m) could only inhibit 64% of the current while diphenylamine-dicarboxylic acid (DPC, 1 mm) completely inhibited it. Inclusion of a peptide inhibitor for protein kinase A (PKI, 10 nm) in the pipette solution blocked ATP-induced time- and voltage-independent current activation but did not affect the delayed activating and inactivating current activation but did not affect the delayed activating and inactivating current which could be totally blocked by DIDS. Anion selectivity sequence was determined in the presence of either PKI or DIDS and found to be significantly different. Increased pipette EGTA (10 mm) or treatment of the cells with trifluoperazine (40 m), an inhibitor of calmodulin, suppressed both types of ATP-induced Cl currents. No current activation by ATP was observed when cells were dialyzed with the IP3 receptor blocker, heparin (10 ng/ml). These results suggest that extracellular ATP activates IP3-linked Ca2+-dependent regulatory pathway, which in turn activates cAMP-dependent pathway, leading to activation of both Ca2+ and cAMP-dependent Cl conductances in epididymal cells.The authors wish to thank Mr. W.O. Fu for technical assistance. This work was supported by the Croucher Foundation, the University and Polytechnic Grants Committee.  相似文献   

3.
Elementary K+ currents through isolated ATP-sensitive K+ channels from neonatal rat cardiocytes were recorded to study their temperature dependence between 9°C and 39°C. Elementary current size and, thus, K+ permeation through the open pore varied monotonically with temperature with a Q10 of 1.25 corresponding to a low activation energy of 3.9 kcal/mol. Open-state kinetics showed a complicated temperature dependence with Q10 values of up to 2.94. Arrhenius anomalies of open(1) and open(2) indicate the occurrence of thermallyinduced perturbations with a dominating influence on channel portions that are involved in gating but are obviously ineffective in altering pore-forming segments. At 39°C, open-state exit reactions were associated with the highest activation energy (O2 exit reaction: 12.1 kcal/ mol) and the largest amount of entropy. A transition from 19°C to 9°C elucidated a paradoxical kinetic response, shortening of both O-states, irrespective of the absence or presence of cAMP-dependent phosphorylation. Another member of the K+ channel family and also a constituent of neonatal rat cardiocyte membranes, 66 pS outwardly-rectifying channels, was found to react predictably since open increased on cooling. Obviously, cardiac K (ATP) + channels do not share this exceptional kinetic responsiveness to a temperature transition from 19°C to 9°C with other K+ channels and have a unique sensitivity to thermally-induced perturbations.  相似文献   

4.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

5.
Aging is associated with a decline in immune function. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4), two important immune deviation-related cytokines, are mainly produced by type 1 and type 2 T cells, respectively. To investigate the age-associated changes in the secretion of these two cytokines, 20 elderly and 20 young subjects fulfilling the SENIEUR protocol were enrolled. The ratios of CD4+ to CD8+ T cells were not different between the two age groups. The CD4+ and CD8+ T cells were purified by a magnetic cell sorting system, and then activated by concurrent anti-CD3 and anti-CD28 stimulation. The released cytokines were determined by ELISA. Both the CD4+ and the CD8+ T cells of the elderly individuals secreted a significantly larger amount of IFN-gamma after activation. Profound IL-4 production by CD8+ T cells was observed in the older subjects compared with that of the young subjects. These data suggested that age-associated decrease in immunity may be related to an imbalance in the secretion of immune deviation cytokines. The number of IL-4-secreting CD8+ T cells (T cytotoxic 2) rose significantly in the older individuals. Our design also provided a useful way to differentiate the T cell subsets secreting the same cytokine, such as IFN-gamma-producing T helper 1 and T cytotoxic 1 cells.  相似文献   

6.
The depolarisation-induced influx of 45Ca2+ into anterior pituitary tissue and GH3 cells through 'L'-type, nimodipine-sensitive channels was investigated. In anterior pituitary prisms, phorbol esters, activators of protein kinase C, caused an enhancement of K(+)-induced 45Ca2+ influx. However, in the GH3 anterior pituitary cell line, phorbol esters inhibited K(+)-induced 45Ca2+ influx. The modulation by phorbol esters in both tissues was stereo-specific and time- and concentration-dependent. The diacylglycerol analogue, 1,2-dioctanoyl sn-glycerol was able to mimic the phorbol ester-induced enhancement of calcium influx into anterior pituitary pieces, but was ineffective in GH3 cells. 1,2-Dioctanoyl sn-glycerol may selectively activate an isoform of protein kinase C which is responsible for enhanced 'L'-type Ca(2+)-channel activity.  相似文献   

7.
We have studied the T cell-mediated lysis of two C58 lymphoma lines: R1(TL+), which bears serologically detectable H-2k and TL1,2,3 antigens, and R1(TL), an immunoselected variant which lacks these antigens. Unlike R1(TL+) cells, the variant cells are not sensitive to specific lysis by T cells directed against either H-2k or minor H antigens of C58 mice. An injection of R1(TL+) cells into allogeneic H-2-identical or H-2-different mice primes for an excellent secondary cytotoxic response in vitro to R1(TL+); but not to R1(TL). Immunization in vivo and in vitro with R1(TL)) leads to little or no priming or generation of cytotoxic T cells. Both cell lines, however, are sensitive to nonspecific lysis by cytotoxic cells in the presence of PHA or Con A, although even under these conditions, R1(TL+) is killed more effectively than is R1(TL). We conclude that R1(TL) does not express any form of H-2 antigen which can be detected by immunization or by sensitivity to cytotoxic T cells.  相似文献   

8.
9.
Summary This study concerns the properties of rapid K+ and Cl transport pathways that are present in the (H++K+)-ATPase membrane from stimulated, and secreting, gastric oxyntic cells. Ion permeabilities in the isolated stimulation-associated vesicles were monitored via the rates of H+ efflux under conditions of exclusive H+/K+ counterflux or H+–Cl co-efflux, as well as by comparison of equilibration rates for86Rb and36Cl under conditions of equilibrium exchange and unidirectional salt flux. These latter studies suggest that Rb+ and Cl pathways are conductive and independent. In spite of the functional independence of the ion pathways, several divalent cations inhibit Rb+ and Cl isotopic exchange as well as the H+ efflux that is dependent on either K+ or anion (Cl, SCN, NO2) fluxes. Zn2+ is the more potent inhibitor, reducing by 50% the sensitive component of K+, Cl, and NO2 fluxes at about 20 m; Mn2+ has a similar effect at 200 m. Ni2+ and Co2+ were roughly equipotent to Mn2+ while Mg2+ and Ca2+ had not inhibitory effect. These results suggest that the stimulation-induced permeabilities, while functioning independently, may be physically linked, i.e., residing within a single entity. In similar studies carried out in (H++K+)-ATPase vesicles obtained from nonstimulated cells, no vestiges of sensitivity to the inhibitory divalent cations could be detected. The implications of these findings for the physiology of the oxyntic cell in the context of a model for membrane fusion are discussed.  相似文献   

10.
In recent years, the electrical burst activity of the insulin releasing pancreatic β-cells has attracted many experimentalists and theoreticians, largely because of its functional importance, but also because of the nonlinear nature of the burst activity. The ATP-sensitive K+ channels are believed to play an important role in electrical activity and insulin release. In this paper, we show by computer simulation how ATP and antidiabetic drugs can lengthen the plateau fraction of bursting and how these chemicals can increase the intracellular Ca2+ level in the pancreatic β-cell.  相似文献   

11.
Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K(+) channels K(V)4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the K(V)4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K(+) current and an alteration in the inactivation of the macroscopic outward K(+) currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of K(V)4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy.  相似文献   

12.
13.
Ferret heart expresses the α1- as well as the α3-isoform of the Na+, K+-ATPase. We have shown previously that the α3 isoform is differentially upregulated during postnatal cardiac development and that in adult ferrets expression of α3 is not responsive to regulation by thyroid hormone (TH). Since developmental-stage dependent effects of TH have been reported previously, the present study examined whether effects of TH on expression of the Na+, K+-ATPase isoforms in ferret heart is modulated during development and possible mechanisms were examined. Ferrets of different age groups were treated with TH and the relative abundance of Na+, K+-ATPase isoforms in ferret myocardium was determined by immunoblotting. Thyroid hormone (T3; 50 μg/100 g body weight on 3 alternating days, s.c.) increased protein levels of the α3 isoform, but not that of α1 or β1, in myocardium of 5-day-old and 3-week-old ferrets. By contrast, in myocardium of 6- and 8-week-old ferrets T3 failed to increase protein levels of α1 and α3. To determine whether elevated plasma levels of TH during development plays a role in the transition, mature ferrets were first made hypothyroid before TH treatment. In these hypothyroid ferrets expression of the α3 isoform remained unresponsive to TH (T4, 0.5 mg/kg for 7 days, s.c.). The transition from TH-responsive to TH-unresponsive appears to be isoform-specific because in skeletal muscle of 8-week-old ferrets and in hypothyroid ferrets the α2 isoform is upregulated by TH. Finally, there appears to be functional thyroid hormone receptors throughout development because in each age group TH effectively induced expression of α-MHC in the myocardium. In conclusion, these findings demonstrate that expression of α3 isoform in the myocardium of newborn ferret is responsive to TH; however, the responsiveness terminates between 3- and 6-weeks of age. Neither elevated endogenous TH level nor a lack of functional thyroid hormone receptor appears to be responsible for the transition from TH-responsive to TH-unresponsive.  相似文献   

14.
The ATP hydrolysis dependent Na+-Na+ exchange of reconstituted shark (Na+ + K+)-ATPase is electrogenic with a transport stoichiometry as for the Na+-K+ exchange, suggesting that translocation of extracellular Na+ is taking place via the same route as extracellular K+. The preparation thus offers an opportunity to compare the sided action of Na+ and of K+ on the affinity for ATP in a reaction in which the intermediary steps in the overall reaction seems to be the same without and with K+. With Na+ but no K+ on the two sides of the enzyme, the ATP-activation curve is hyperbolic and the affinity for ATP is high. Extracellular K+ in concentrations of 50 μM (the lowest tested) and up gives biphasic ATP activation curves, with both a high- and a low-affinity component for ATP. Cytoplasmic K+ also gives biphasic ATP-activation curves, however, only when the K+ concentration is 50 mM or higher (Na+ + K+ = 130 mM). The different ATP-activation curves are explained from the Albers-Post scheme, in which there is an ATP-dependent and an ATP-independent deocclusion of E2(Na2+) and E2(K2+), respectively, and in which the dephosphorylation of E2-P is rate limiting in the presence of Na+ (but no K+) extracellular, whereas in the presence of extracellular K+ it is the deocclusion of E2(K2+) which is rate limiting.  相似文献   

15.
The effects of changes in secretory concentrations of K+, Na+ and HCO3 on transmucosal potential difference (PD) and resistance in Cl-free (SO42−) solutions were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments, histamine was not present in the nutrient solution and cimetidine was primarily used to obtain acid inhibition. Increase of K+ from 4 to 80 mM, decrease of Na+ from 156 to 15.6 mM and decrease of HCO3 from 25 to 5 mM gave, 10 min after the change, in the secreting fundus Δ PD values of 39.7, −11.9 and 3.2 mV, respectively. In the resting fundus, 1.5 to 2 h after the addition of cimetidine, the same changes in secretory ion concentration gave Δ PD values of 12.2, −5.6 and 1.5 mV, respectively. Replacement of cimetidine with SCN and without histamine yielded a Δ PD somewhat lower than that in cimetidine, namely 9 mV for a K+ change from 4 to 80 mM. Subsequent addition of histamine with SCN present gave a Δ PD of about 21 mV. The change in PD was attributed to histamine increasing the secretory membrane area, leading to an increase in K+ conductance. Another possibility is that histamine increases the K+ conductance per se.  相似文献   

16.
17.
Our previously published whole-cell patch-clamp studies on the cells of the intralobular (granular) ducts of the mandibular glands of male mice revealed the presence of an amiloride-sensitive Na+ conductance in the plasma membrane. In this study we demonstrate the presence also of a Cl conductance and we show that the sizes of both conductances vary with the Cl concentration of the fluid bathing the cytosolic surface of the plasma membrane. As the cytosolic Cl concentration rises from 5 to 150 mmol/liter, the size of the inward Na+ current declines, the decline being half-maximal when the Cl concentration is approximately 50 mmol/liter. In contrast, as cytosolic Cl concentration increases, the inward Cl current remains at a constant low level until the Cl concentration exceeds 80 mmol/liter, when it begins to increase. Studies in which Cl in the pipette solution was replaced by other anions indicate that the Na+ current is suppressed by intracellular Br-, Cl and NO 3 - but not by intracellular I-, glutamate or gluconate. Our studies also show that the Cl conductance allows passage of Cl and Br- equally well, I-less well, and NO 3 - , glutamate and gluconate poorly, if at all. The findings with NO 3 - are of particular interest because they show that suppression of the Na+ current by a high intracellular concentration of a particular anion does not depend on actual passage of that anion through the Cl conductance. In mouse granular duct cells there is, thus, a reciprocal regulation of Na+ and Cl conductances by the cytosolic Cl concentration. Since the cytosolic Cl concentration is closely correlated with cell volume in many epithelia, this reciprocal regulation of Na+ and Cl conductances may provide a mechanism by which ductal Na+ and Cl transport rates are adjusted so as to maintain a stable cell volume.This project was supported by the National Health and Medical Research Council of Australia. We thank Professor P. Barry (University of New South Wales) for assistance with the junction potential measurements.  相似文献   

18.
19.
The ε-subunit of ATP-synthase is an endogenous inhibitor of the hydrolysis activity of the complex and its α-helical C-terminal domain (εCTD) undergoes drastic changes among at least two different conformations. Even though this domain is not essential for ATP synthesis activity, there is evidence for its involvement in the coupling mechanism of the pump. Recently, it was proposed that coupling of the ATP synthase can vary as a function of ADP and Pi concentration. In the present work, we have explored the possible role of the εCTD in this ADP- and Pi-dependent coupling, by examining an εCTD-lacking mutant of Escherichia coli. We show that the loss of Pi-dependent coupling can be observed also in the εCTD-less mutant, but the effects of Pi on both proton pumping and ATP hydrolysis were much weaker in the mutant than in the wild-type. We also show that the εCTD strongly influences the binding of ADP to a very tight binding site (half-maximal effect  1 nM); binding at this site induces higher coupling in EFOF1 and increases responses to Pi. It is proposed that one physiological role of the εCTD is to regulate the kinetics and affinity of ADP/Pi binding, promoting ADP/Pi-dependent coupling.  相似文献   

20.
Stomatal opening is the result of K+-salt accumulation in guard cells. Potassium uptake in these motor cells is mediated by voltage-dependent, K+-selective ion channels. Here we compare the in-vitro properties of two guard-cell K+-channel α-subunits from Arabidopsis thaliana (L.) Heynh. (KAT1) and Solanum tuberosum L. (KST1) after heterologous expression with the respective K+-transport characteristics in their mother cell. The KAT1 and KST1 subunits when expressed in Xenopus oocytes shared the basic features of the K+-uptake channels in the corresponding guard cells, including voltage dependence and single-channel conductance. Besides these similarities, the electrophysiological comparison of K+ channels in the homologous and the heterologous expression systems revealed pronounced differences with respect to modulation and block by extracellular cations. In the presence of 1 mM Cs+, 50% of the guard-cell K+-uptake channels (GCKC1in) in A. thaliana and S. tuberosum, were inhibited upon hyperpolarization to −90 mV. For a similar effect on KAT1 and KST1 in oocytes, voltages as negative as −155 mV were required. In contrast, compared to the K+ channels in vivo the functional α-subunit homomers almost lacked a voltage-dependent block by extracellular Ca2+. Similar to the block by Cs+ and Ca2+, the acid activation of the α-homomers was less pronounced in oocytes. Upon acidification the voltage-dependence shifted by 82 and 90 mV for GCKCLin in A. thaliana and S. tuberosum, respectively, but only by 25 mV for KAT1 and KST1. From the differences in K+-channel modulation in vivo and after heterologous expression we conclude that the properties of functional guard-cell K+-uptake channels result either from the heterometric assembly of different α-subunits or evolve from cell-type-specific posttranslational modification. Received: 6 March 1998 / Accepted: 9 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号