首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Chronic lead (Pb2 +) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K+ loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT).

Methods

Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy.

Results

Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb2 + exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb2 +.

Conclusion and general significance

Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb2 + exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb2 + toxicity.  相似文献   

2.
Incubation of freshly isolated rat liver mitochondria in the presence of oxygen free radical generating hypoxanthine —xanthine oxidase system led to swelling of mitochondria as measured by the change in optical density, which was reversed by the addition of superoxide dismutase. O2 in the presence of CaCl2 enhanced the peroxidative decomposition of mitochondrial membrane lipids along with swelling of the organelle. Free radical generation led to enhancement of monoamine oxidase activity while glutathione peroxidase and cytochrome c oxidase were inhibited. Tertbutyl hydroperoxide (t-BHP) caused mitochondrial swelling through oxidative stress. Incorporation of ruthenium red, which is a Ca2+ transport blocker, during assay abolished peroxidative membrane damage and swelling. Dithiothreitol (DTT) accorded protection against t-BHP induced mitochondrial swelling. The above in vitro data suggest a possible interrelationship of active oxygen species, membrane damage and calcium dynamics.  相似文献   

3.
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to carbon monoxide, bilirubin, and iron. All three products possess biological functions; bilirubin, in particular, is a potent free radical scavenger of which its antioxidant property is enhanced at low oxygen tension. Here, we investigated the effect of severe hypoxia and reoxygenation on HO-1 expression in cardiomyocytes and determined whether HO-1 and its product, bilirubin, have a protective role against reoxygenation damage. Hypoxia caused a time-dependent increase in both HO-1 expression and heme oxygenase activity, which gradually declined during reoxygenation. Reoxygenation of hypoxic cardiomyocytes produced marked injury; however, incubation with hemin or bilirubin during hypoxia considerably reduced the damage at reoxygenation. The protective effect of hemin is attributable to increased availability of substrate for heme oxygenase activity, because hypoxic cardiomyocytes generated very little bilirubin when incubated with medium alone but produced substantial bile pigment in the presence of hemin. Interestingly, incubation with hemin also maintained high heme oxygenase activity levels during the reoxygenation period. Reactive oxygen species generation was enhanced after hypoxia, and hemin and bilirubin were capable once again to attenuate this effect. These results indicate that the HO-1-bilirubin pathway can effectively defend hypoxic cardiomyocytes against reoxygenation injury and highlight the issue of heme availability in the cytoprotective action afforded by HO-1.  相似文献   

4.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2'-Azobis(2-amidinopropane) (AAPH) and 4,4'-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

5.
Oxidative stress and the generation of reactive oxygen species (ROS) have been implicated in the pathogenesis of cellular damage. These events have usually been reported in terms of oxidation of a reporter molecule such as 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA). Treatment of HeLa cells with hemin or metalloporphyrins resulted in a rapid oxidation of DCFH in a time- and dose-dependent manner. This oxidation was inhibited by treatment of the cells with a large amount of superoxide dismutase and catalase, which is different from observations that these enzymes had no effect on the induction of heme oxygenase-1, a stress-induced protein, in hemin-treated cells. To examine the possibility that the oxidation of DCFH is independent of the generation of ROS, the oxidation was measured using hemoglobin-synthesizing erythroleukemia K562 cells. When K562 cells were treated with delta-aminolevulinic acid, a precursor of heme, oxidation of DCFH increased depending on the heme content in cells. Then DCFH-DA was oxidized directly with heme, hemoglobin, myoglobin and cytochrome c. These results suggest that oxidation of DCFH is not always related to the generation of ROS but may be related to heme content in cells.  相似文献   

6.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2′-Azobis(2-amidinopropane) (AAPH) and 4,4′-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

7.
Despite recent progress in the molecular characterization of high-conductance Ca2+-activated K+ (maxi-K) channels, the molecular identities of intermediate conductance Ca2+-activated K+ channels, including that of mature erythrocytes, remains unknown. We have used various peptide toxins to characterize the intermediate conductance Ca2+-activated K+ channels (Gardos pathway) of human and rabbit red cells. With studies on K+ transport and on binding of 125I-charybdotoxin (ChTX) and 125I-kaliotoxin (KTX) binding in red cells, we provide evidence for the distinct nature of the red cell Gardos channel among described Ca2+-activated K+ channels based on (i) the characteristic inhibition and binding patterns produced by ChTX analogues, iberiotoxin (IbTX) and IbTX-like ChTX mutants, and KTX (1–37 and 1–38 variants); (ii) the presence of some properties heretofore attributed only to voltage-gated channels, including inhibition of K transport by margatoxin (MgTX) and by stichodactyla toxin (StK); (iii) and the ability of scyllatoxin (ScyTX) and apamin to displace bound 125I-charybdotoxin, a novel property for K+ channels. These unusual pharmacological characteristics suggest a unique structure for the red cell Gardos channel.We thank Dr. Chris Miller of Brandeis University for generously providing recombinant ChTX mutants, Dr. Maria Garcia of Merck Research Laboratories for MgTX and Dr. Regine Romi of Laboratoire d'Ingenierie des Proteines (Marseille, France) for synthetic KTX,1–37 and KTX,1–38. This research was supported by grant HL-15157 from the National Institutes of Health.  相似文献   

8.
A selenium (Se)-containing immunoconjugate of a human anti-erythrocyte membrane antibody (Ab-Se) has been synthesized via oxidation of the carbohydrate moieties of the antibody and covalent coupling with selenocystamine. The isolated Ab-Se immunoconjugate is shown to be more hemolytic than is selenocystamine when expressed on equivalent selenium basis. Native antibody preincubated with the human erythrocytes prevented hemolysis induced by the Ab-Se immunoconjugate. As observed microscopically, the Ab-Se immunoconjugate caused extensive damage to the erythrocyte membrane and lysis. The cytotoxicity of Se toward the human erythrocytes is believed to be caused initially by the localized generation of superoxide (O2·-) within the cell membrane. This is the first demonstration of site-directed immunoselectivity of Se cytotoxicity and demonstrates the potential for a free radical pharmacology based on localized Se-generated O2·-.  相似文献   

9.
The exposure of the Na+/K+/Mg2+- and Ca2+/Mg2+-stimulated ATPase activities in human erythrocytes through the use of several different lytic procedures revealed significant variations in the level of activity. Density (age)-separated as well as mixed-age human erythrocytes were subjected to hemolysis in isotonic buffer using saponin or ethylene glycol, to hemolysis in hypotonie buffer using low osmolarity buffers, or to freeze-thaw to allow potential accessibility to the ATPases. The results ranged from maximum exposure of both types of ATPases in saponin-treated cells, to little or no exposure of activity in ethylene glycol-treated cells, to variable responses in membranes derived by hypotonie hemolysis. The inability to elicit maximum exposure of ATPases in young cells by the freeze-thaw treatment was reversed by the use of saponin lysis in isotonic medium. These results illustrate the importance of the lytic conditions of membrane preparations on the recovery of as well as exposure to ATPase activities. It is concluded that saponin lysis in isotonic buffer medium is the preferred lytic technique for preparation of membranes retaining significant levels of the Na+/K+/Mg2+- and Ca2+/Mg2+-stimulated ATPases. These data are also discussed in reference to the degree of retention of the activator protein for the Ca2+Mg2+ ATPase system.  相似文献   

10.
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20–30 % lipid and 50–75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2–3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.  相似文献   

11.
Low concentrations of chelating agents such as EDTA prevent the air oxidation of vanadyl (VO2+, +4 oxidation state) to vanadate (VO3?, +5 oxidation state). Under these conditions, the ionophore A23187 mediates the rapid entry of vanadyl into human erythrocytes. In the presence of A23187, vanadyl at concentrations in excess of EDTA gives rise to a dramatic increase in K+ permeability, which is very similar to the Gardos Ca2+-induced K+ permeability increase with respect to ion selectivity, response to inhibitors, effects of pH, and stimulation by external K+. In ultrapure media with very low Ca2+, however, vanadyl has no effect on K+ permeability. These experiments suggest that Ca2+ is displaced from EDTA by vanadyl and then enters the cell via A23187 where it triggers the increase in K+ permeability. This hypothesis is confirmed by experiments demonstrating that vanadyl does displace Ca2+ from EDTA. Vanadate, an inhibitor of Ca2+-ATPase, causes a selective increase in K+ permeability in metabolically depleted cells, but the increase is abolished by low concentrations of EDTA, indicating that this effect is also due to entry of extracellular Ca2+. Earlier observations of effects of vanadyl and vanadate on erythrocyte K+ permeability can thus be explained on the basis of inhibition of the Ca2+ pump by vanadium, leading to an increase in intracellular Ca2+ concentration.  相似文献   

12.
The ionophore A23187 causes an increase in the Ca content of human erythrocytes and a Ca-dependent increase in K efflux (Gardos effect). These changes are associated with a reduction in osmotic fragility and cell size. Treatment of erythrocytes from patients with Duchenne muscular dystrophy with A23187 results in 45Ca uptake comparable to that of erythrocytes from control subjects. However, the reduction in osmotic fragility and K content observed in dystrophic erythrocytes is twofold greater than in control erythrocytes. These results indicate that an alteration in the regulation of erythrocyte membrane function by Ca occurs in Duchenne muscular dystrophy. This alteration may be responsible for other changes in erythrocyte membrane properties observed in Duchenne muscular dystrophy.  相似文献   

13.
When human red cells are incubated at 37°C with the artificial electron donor system ascorbate + phenazine methosulphate the fluxes of Rb+ (K+) through the cell membrane are increased. The effect of this donor system is much stronger in energy-depleted than in normal cells. The same effects are produced by HS-glutathione, NADH or NADPH loaded into resealed ghosts, but these electron donors were ineffective when added to the incubation medium. The Rb+ (K+) fluxes induced by electron donors resemble closely those induced by an increase of intracellular Ca2+ (Gardos effect). The electron donors require the presence of intracellular Ca2+ to be effective, but at levels that do not stimulate by themselves the fluxes of K+. Flavoenzyme inhibitors (atebrin and chlorpromazine), oligomycin and quinine prevented the effects of both electron donors and Ca2+ alone; antimycin, uncouplers and ethacrynic acid inhibited them partially; ouabain, furosemide, and rotenone had no effect.The results could be explained if the effect of electron donors is to bring about a change in the redox state of some membrane component(s) that makes intracellular Ca2+ more effective to elicit rapid K+ movements. Plasma membrane oxidoreductase activities could be engaged in this change.  相似文献   

14.
The total content and profile of bile salts and phospholipids are reported for several mammalian biles. Rabbit and guinea-pig biles are characterized by high proportions of conjugated dihydroxy bile salts with respect to trihydroxy bile salts, but contain relatively little phospholipid. Both rabbit and guinea-pig biles exhibit little evidence of hepatic cell damage, even though they are able to cause membrane damage (as evidenced by lysis of human erythrocytes) at low (2--3 mM) concentrations of bile salts; this lytic behaviour is also a property of their predominant bile salts. Addition of phosphatidylcholine to the bile or bile salt is able to decrease the lytic behaviour. Perhaps the most significant observation is that these biles, and their predominant bile salts, are dramatically less lytic towards sheep erythrocytes, indicating that some factor(s) in membrane composition and structure may partly explain the resistance of membranes of the biliary tract to the presence of high concentrations of potentially membrane-damaging bile salts.  相似文献   

15.
DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl channels. Some Cl channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca2+ dependence of PS scrambling, we explored whether inhibitors of Cl channels (DIDS, NPPB) or of Ca2+-activated Cl? channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca2+ concentration ([Ca2+]i) and activity of Ca2+-activated K+ (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl? channels inhibitors decreased [Ca2+]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca2+]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl channel blockers further modified the alterations of [Ca2+]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca2+ ionophore ionomycin (1 μM). The ability of the Cl? channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca2+]i as TA and AO1 had a particularly strong decreasing effect on [Ca2+]i but at the same time enhanced PS exposure. In conclusion, Cl channel inhibitors affect Gardos channels, influence Ca2+ homeostasis and induce PS exposure of hRBCs by Ca2+-independent mechanisms.  相似文献   

16.
The effect of various physical and chemical parameters on the cytotoxic reaction was studied in a 51Cr-release assay in order to analyze the mechanism by which human blood mononuclear cells (MC) damage antibody-sensitized target cells infected with herpes simplex virus. Centrifugation of the target cell-MC mixture consistently increased the velocity of the reaction. In addition, uncentrifuged target cell-MC cultures showed a sigmoidal kinetic curve of 51Cr release with an initial lag phase of at least 10 min, whereas 51Cr release in centrifuged cultures followed a linear pattern with time without an initial lag. These findings indicate that direct contact between target and effector cells is necessary for cytotoxicity to occur. The reaction as a whole was temperature dependent, proceeding well at 37 °C and not at all at 4 °C. Incubation of the MC at 46 °C for 10 min abolished their cytotoxic potential without affecting their viability; similar heating of the target cells did not affect their background isotope release or sensitivity to the lytic process. Heating target cell-MC mixtures at 46 °C for 10 min thus provided a tool by which the temporal relationship between the mounting of “lethal hits” and specific isotope release, or cell lysis, could be studied. Using this technique, we observed virtually simultaneous occurrence of lethal hits and cell lysis, measured at various intervals between 10 and 360 min postincubation. Likewise, we were unable to demonstrate a transient period of increased osmotic fragility in target cells after contact with MC but before actual cell lysis. Taken together, these findings imply either that cell lysis, as indicated by 51Cr release, results from a sudden nonosmotic injury to the target cell membrane or, alternatively, osmotic damage leading to 51Cr release occurs too rapidly to be detected by the methods employed in this study. These findings imply either a qualitative or a quantitative difference between antibody-dependent cellular cytotoxicity (ADCC) mediated by K cells and cytotoxicity mediated by sensitized T cells.The cytotoxic reaction was completely inhibited by 10 mM EDTA and did not occur in a Ca2+- and Mg2+-free medium. Neither Ca2+ nor Mg2+ alone produced as much cytotoxicity as the two cations in tandem; in addition, when added to the culture medium in suboptimal amounts, the two cations were either additive or synergistic. These observations suggest that both cations are necessary in ADCC and also that there may be separate Ca2+- and Mg2+-dependent events in the lytic pathway.  相似文献   

17.
Urate, 3-ribosylurate, ascorbate, glutathione and plasma protected bovine, porcine and human erythrocytes from hemolysis caused by t-butyl hydroperoxide (t-BHP). Urate partially protected porcine erythrocytes from hemolysis by t-BHP when it was added 15 min after the addition of the t-BHP, but it did not protect when added 30 min after the t-BHP. Glutathione and ascorbate protected oxyhemoglobin from oxidation to methemoglobin by t-BHP; 3-ribosylurate gave only slight protection. Urate stimulated the formation of methemoglobin from oxyhemoglobin during treatment with t-BHP.  相似文献   

18.
Lysis of human culture-derived macrophages by extracellular ATP has recently been described, and treatment of macrophages with interferon-γ rendered those cells significantly more sensitive to lysis. In addition, cell death occurred more rapidly in interferon (IFN)-treated cells than in untreated macrophages. In an attempt to identify the mechanism by which extracellular ATP affects macrophages, as well as to explore the differences between interferon-γ-treated and untreated macrophages, selected metabolic inhibitors were included in the lytic assays. Of the compounds tested, three antagonists of calmodulin-linked pathways (trifluoperazine, KN-62, and calmidazolium) blocked the ATP-mediated lysis of both interferon-γ-treated and colony-stimulating factor-treated macrophages in a dose-dependent manner. Early signals of the ATP ligation of the P2Z purinoceptors of human macrophages included increases in cytosolic [Ca2+] and depolarization of the plasma membrane. However, the inclusion of calmodulin antagonists in these assays did not abrogate either effect. These results suggest that the mechanism which mediates the efflux of 51Cr-labeled proteins from ATP-lysed macrophages is distinct from calcium mobilization and membrane depolarization, and may involve the generation of secondary pores channels in the plasma membrane via a calmodulin-linked pathway.  相似文献   

19.
Red and processed meats are considered risk factors for colorectal cancer (CRC); however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat), and hemin in combination with nitrite (a model of processed meat) on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.  相似文献   

20.
Purified delta toxin covalently attached to large polymers of sepharose retained 12.5% to 25% of its hemolytic activity against human erythrocytes. The lysis of human erythrocytes by such a complex indicates that the interaction of delta toxin with superficial membrane structures alone may suffice to initiate the lysis of erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号