首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chronic hepatitis C virus (HCV) infection is a major cause of liver disease. The HCV polyprotein contains a hypervariable region (HVR1) located at the N terminus of the second envelope glycoprotein E2. The strong variability of this 27-amino-acid region is due to its apparent tolerance of amino acid substitutions together with strong selection pressures exerted by anti-HCV immune responses. No specific function has so far been attributed to HVR1. However, its presence at the surface of the viral particle suggests that it might be involved in viral entry. This would imply that HVR1 is not randomly variable. We sequenced 460 HVR1 clones isolated at various times from six HCV-infected patients receiving alpha interferon therapy (which exerts strong pressure towards quasispecies genetic evolution) and analyzed their amino acid sequences together with those of 1,382 nonredundant HVR1 sequences collected from the EMBL database. We found that (i) despite strong amino acid sequence variability related to strong pressures towards change, the chemicophysical properties and conformation of HVR1 were highly conserved, and (ii) HVR1 is a globally basic stretch, with the basic residues located at specific sequence positions. This conservation of positively charged residues indicates that HVR1 is involved in interactions with negatively charged molecules such as lipids, proteins, or glycosaminoglycans (GAGs). As with many other viruses, possible interaction with GAGs probably plays a role in host cell recognition and attachment.  相似文献   

3.
丙型肝炎病毒( HCV)包膜E2蛋白氨基端的高变区1(HVR1)由27个氨基酸组成,是HCV蛋白中变异频率最高的肽段.HVR1含中和抗体表位,同时对HCV细胞侵入起重要作用,其结构与功能的关系目前尚不清楚.本研究对H77株包膜蛋白基因中的HVR1进行了一系列缺失突变,然后将突变体表达质粒与假病毒包装质粒共转染人胚肾(H...  相似文献   

4.
Hepatitis C virus glycoprotein E2 contains 18 conserved cysteines predicted to form nine disulfide pairs. In this study, a comprehensive cysteine-alanine mutagenesis scan of all 18 cysteine residues was performed in E1E2-pseudotyped retroviruses (HCVpp) and recombinant E2 receptor-binding domain (E2 residues 384 to 661 [E2(661)]). All 18 cysteine residues were absolutely required for HCVpp entry competence. The phenotypes of individual cysteines and pairwise mutation of disulfides were largely the same for retrovirion-incorporated E2 and E2(661), suggesting their disulfide arrangements are similar. However, the contributions of each cysteine residue and the nine disulfides to E2 structure and function varied. Individual Cys-to-Ala mutations revealed discordant effects, where removal of one Cys within a pair had minimal effect on H53 recognition and CD81 binding (C486 and C569) while mutation of its partner abolished these functions (C494 and C564). Removal of disulfides at C581-C585 and C452-C459 significantly reduced the amount of E1 coprecipitated with E2, while all other disulfides were absolutely required for E1E2 heterodimerization. Remarkably, E2(661) tolerates the presence of four free cysteines, as simultaneous mutation of C452A, C486A, C569A, C581A, C585A, C597A, and C652A (M+C597A) retained wild-type CD81 binding. Thus, only one disulfide from each of the three predicted domains, C429-C552 (DI), C503-C508 (DII), and C607-C644 (DIII), is essential for the assembly of the E2(661) CD81-binding site. Furthermore, the yield of total monomeric E2 increased to 70% in M+C597A. These studies reveal the contribution of each cysteine residue and the nine disulfide pairs to E2 structure and function.  相似文献   

5.
Human monoclonal antibodies derived from B cells of HCV-infected individuals provide information on the immune response to native HCV envelope proteins as they are recognized during infection. Monoclonal antibodies have been useful in the determination of the function and structure of specific immunogenic domains of proteins and should also be useful for the structure/function characterization of HCV E1 and E2 envelope glycoproteins. The HCV E2 envelope glycoprotein has at least three immunodistinctive conformation domains, designated A, B, and C. Conformational epitopes within domain B and C are neutralizing antibody targets on HCV pseudoparticles as well as from infectious cell culture virus. In this study, a combination of differential surface modification and mass spectrometric limited proteolysis followed by alanine mutagenesis was used to provide insight into potential conformational changes within the E2 protein upon antibody binding. The arginine guanidine groups in the E2 protein were modified with CHD in both the affinity bound and free states followed by mass spectrometric analysis, and the regions showing protection upon antibody binding were identified. This protection can arise by direct contact between the residues and the monoclonal antibody, or by antibody-induced conformational changes. Based on the mass spectrometric data, site-directed mutagenesis experiments were performed which clearly identified additional amino acid residues on E2 distant from the site of antibody interaction, whose change to alanine inhibited antibody recognition by inducing conformational changes within the E2 protein.  相似文献   

6.
A model for the hepatitis C virus envelope glycoprotein E2   总被引:16,自引:0,他引:16  
Several experimental studies on hepatitis C virus (HCV) have suggested the envelope glycoprotein E2 as a key antigen for an effective vaccine against the virus. Knowledge of its structure, therefore, would present a significant step forward in the fight against this disease. This paper reports the application of fold recognition methods in order to produce a model of the HCV E2 protein. Such investigation highlighted the envelope protein E of Tick Borne Encephalitis virus as a possible template for building a model of HCV E2. Mapping of experimental data onto the model allowed the prediction of a composite interaction site between E2 and its proposed cellular receptor CD81, as well as a heparin binding domain. In addition, experimental evidence is provided to show that CD81 recognition by E2 is isolate or strain specific and possibly mediated by the second hypervariable region (HVR2) of E2. Finally, the studies have also allowed a rough model for the quaternary structure of the envelope glycoproteins E1 and E2 complex to be proposed. Proteins 2000;40:355-366.  相似文献   

7.
The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.  相似文献   

8.
Little is known about the structure of the envelope glycoproteins of hepatitis C virus (HCV). To identify new regions essential for the function of these glycoproteins, we generated HCV pseudoparticles (HCVpp) containing HCV envelope glycoproteins, E1 and E2, from different genotypes in order to detect intergenotypic incompatibilities between these two proteins. Several genotype combinations were nonfunctional for HCV entry. Of interest, a combination of E1 from genotype 2a and E2 from genotype 1a was nonfunctional in the HCVpp system. We therefore used this nonfunctional complex and the recently described structural model of E2 to identify new functional regions in E2 by exchanging protein regions between these two genotypes. The functionality of these chimeric envelope proteins in the HCVpp system and/or the cell-cultured infectious virus (HCVcc) was analyzed. We showed that the intergenotypic variable region (IgVR), hypervariable region 2 (HVR2), and another segment in domain II play a role in E1E2 assembly. We also demonstrated intradomain interactions within domain I. Importantly, we also identified a segment (amino acids [aa] 705 to 715 [segment 705-715]) in the stem region of E2, which is essential for HCVcc entry. Circular dichroism and nuclear magnetic resonance structural analyses of the synthetic peptide E2-SC containing this segment revealed the presence of a central amphipathic helix, which likely folds upon membrane binding. Due to its location in the stem region, segment 705-715 is likely involved in the reorganization of the glycoprotein complexes taking place during the fusion process. In conclusion, our study highlights new functional and structural regions in HCV envelope glycoprotein E2.  相似文献   

9.
Human CD81 has been previously identified as the putative receptor for the hepatitis C virus envelope glycoprotein E2. The large extracellular loop (LEL) of human CD81 differs in four amino acid residues from that of the African green monkey (AGM), which does not bind E2. We mutated each of the four positions in human CD81 to the corresponding AGM residues and expressed them as soluble fusion LEL proteins in bacteria or as complete membrane proteins in mammalian cells. We found human amino acid 186 to be critical for the interaction with the viral envelope glycoprotein. This residue was also important for binding of certain anti-CD81 monoclonal antibodies. Mutating residues 188 and 196 did not affect E2 or antibody binding. Interestingly, mutation of residue 163 increased both E2 and antibody binding, suggesting that this amino acid contributes to the tertiary structure of CD81 and its ligand-binding ability. These observations have implications for the design of soluble high-affinity molecules that could target the CD81-E2 interaction site(s).  相似文献   

10.
Dengue virus (DV) is a flavivirus and its urban transmission is maintained largely by its mosquito vectors and vertebrate host, often human. In this study, investigation was carried out on the involvement of domain III of the envelope (E) glycosylated protein of dengue virus serotypes 1 and 2 (DV-1 and DV-2 DIII) in binding to host cell surfaces, thus mediating virus entry. Domain III protein of flavivirus can also serve as an attractive target in inhibiting virus entry. The respective DV DIII proteins were expressed as soluble recombinant fusion proteins before purification through enzymatic cleavage and affinity purification. The purified recombinant DV-1 and DV-2 DIII proteins both demonstrated the ability to inhibit the entry of DV-1 and DV-2 into HepG2 cells and C6/36 mosquito cells. As such, the DV DIII protein is indeed important for the interaction with cellular receptors in both human and mosquito cells. In addition, this protein induced antibodies that completely neutralized homologous dengue serotypes although not with the same efficiency among the heterologous serotypes. This observation may be of importance when formulating a generic vaccine that is effective against all dengue virus serotypes.  相似文献   

11.
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.  相似文献   

12.
Sequence evolution of the hypervariable region 1 (HVR1) in the N terminus of E2/NS1 of hepatitis C virus (HCV) was studied retrospectively in six chimpanzees inoculated with the same genotype 1b strain, containing a unique predominant HVR1 sequence. Immediately after inoculation, all animals contained the same HVR predominant sequence. Two animals developed an acute self-limiting infection. Anti-HVR1 immunoglobulin G (IgG) was produced 40 to 60 days after inoculation and rapidly disappeared after normalization of transaminases. Another chimpanzee, previously infected with human immunodeficiency virus type 1, showed a delayed response to HVR1 epitopes after superinfection with HCV. No sequence variation of HVR1 was observed in these two animals during the transient viremia in the acute phase. Three other chimpanzees developed a chronic HCV infection. During follow up, sequence evolution occurred in two animals and their anti-HVR1 response remained at varying but detectable levels. The first mutations occurred immediately after the production of anti-HVR1 during the acute phase. However, IgM anti-HVR1 was not detectable. Remarkably, HVR1 sequences remained conserved for more than 6 years in another chronically infected animal. This correlated with the complete absence of detectable anti-HVR1 during this period. Seven years after inoculation, anti-HVR1 IgG was produced and coincided with an HVR1 alteration. These results strongly suggest the involvement of neutralizing anti-HVR antibodies in sequence evolution of HVR1 through immune selection.  相似文献   

13.
We previously identified two hypervariable regions [HVR1 (27 amino acids) and HVR2 (7 amino acids)] in the putative envelope glycoprotein (gp70) by comparison of the amino acid sequences of many isolates of the HCV-II genotype. To understand the functional features of these HVRs, using the polymerase chain reaction we analyzed the rate of actual sequence variability in the region including HVR1 and HVR2 of HCV isolated successively at intervals of several months from two patients with chronic C-type hepatitis. In both patients, the amino acid sequence of HVR1, but not HVR2, was found to change dramatically during the observation period (about one amino acid per month). However, no alteration of the amino acid sequence of HVR1 of HCV was observed in a patient in the acute phase of chronic hepatitis. Restriction digestion analysis of sequence diversity showed that a HCV genome with a newly introduced mutation in HVR1 often became the predominant population at the next time of examination. Alterations of amino acids in HVR1 occurred sequentially in the two patients in the chronic phase. These findings suggest that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection.  相似文献   

14.
The quasispecies nature of hepatitis C virus (HCV) has been well documented over its whole genome and the most variable domain is located at the 5' end of the second envelope region, the so-called hypervariable region 1 (HVR1). HVR1 has therefore been extensively used as the target for characterizing HCV quasispecies profiles. In this study, we reported our finding that partially mismatched primers preferentially amplify different HVR1 sequences in a heterogeneous virus population. This finding suggests a possible mechanism of bias during the amplification of HVR1 sequences and may be responsible for some conflicting data regarding evolutionary or clinical implications of HCV quasispecies.  相似文献   

15.
Meyer K  Banerjee A  Frey SE  Belshe RB  Ray R 《PloS one》2011,6(8):e23699
We have completed a phase 1 safety and immunogenicity trial with hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, with MF59 adjuvant as a candidate vaccine. Neutralizing activity to HCV genotype 1a was detected in approximately 25% of the vaccinee sera. In this study, we evaluated vaccinee sera from poor responders as a potential source of antibody dependent enhancement (ADE) of HCV infection. Sera with poor neutralizing activity enhanced cell culture grown HCV genotype 1a or 2a, and surrogate VSV/HCV pseudotype infection titer, in a dilution dependent manner. Surrogate pseudotypes generated from individual HCV glycoproteins suggested that antibody to the E2 glycoprotein; but not the E1 glycoprotein, was the principle target for enhancing infection. Antibody specific to FcRII expressed on the hepatic cell surface or to the Fc portion of Ig blocked enhancement of HCV infection by vaccinee sera. Together, the results from in vitro studies suggested that enhancement of viral infectivity may occur in the absence of a strong antibody response to HCV envelope glycoproteins.  相似文献   

16.
Basu A  Beyene A  Meyer K  Ray R 《Journal of virology》2004,78(9):4478-4486
The hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein is a 27-amino-acid sequence located at its N terminus. In this study, we investigated the functional role of HVR1 for interaction with the mammalian cell surface. The C-terminal truncated E2 glycoprotein was appended to a transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein for generation of the chimeric E2-G gene construct. A deletion of the HVR1 sequence from E2 was created for the construction of E2DeltaHVR1-G. Pseudotype virus, generated separately by infection of a stable cell line expressing E2-G or E2DeltaHVR1-G with a temperature-sensitive mutant of VSV (VSVts045), displayed unique functional properties compared to VSVts045 as a negative control. Virus generated from E2DeltaHVR1-G had a reduced plaquing efficiency ( approximately 50%) in HepG2 cells compared to that for the E2-G virus. Cells prior treated with pronase (0.5 U/ml) displayed a complete inhibition of infectivity of the E2DeltaHVR1-G or E2-G pseudotypes, whereas heparinase I treatment (8 U/ml) of cells reduced 40% E2-G pseudotype virus titer only. E2DeltaHVR1-G pseudotypes were not sensitive to heparin (6 to 50 micro g/ml) as an inhibitor of plaque formation compared to the E2-G pseudotype virus. Although the HVR1 sequence itself does not match with the known heparin-binding domain, a synthetic peptide representing 27 amino acids of the E2 HVR1 displayed a strong affinity for heparin in an enzyme-linked immunosorbent assay. This binding was competitively inhibited by a peptide from the V3 loop of a human immunodeficiency virus glycoprotein subunit (gp120) known to bind with cell surface heparin. Taken together, our results suggest that the HVR1 of E2 glycoprotein binds to the cell surface proteoglycans and may facilitate virus-host interaction for replication cycle of HCV.  相似文献   

17.
Chronic hepatitis C virus (HCV) infection is frequently associated with extrahepatic manifestations, including nonmalignant and malignant B-cell lymphoproliferative disorders. It has been reported that specific changes or recurring motifs in the amino acid sequence of the HCV hypervariable region 1 (HVR1) may be associated with cryoglobulinemia. We searched for specific insertions/deletions and/or amino acid motifs within HVR1 in samples from 80 symptomatic and asymptomatic patients with and 33 patients without detectable cryoglobulins, all with chronic HCV infection. At variance with the results of a previous study which reported a high frequency of insertions at position 385 of HVR1 from cryoglobulinemic patients, we found a 6.2% prevalence of insertions in samples from patients with and a 9.1% prevalence in those without cryoglobulinemia. Moreover, statistical and bioinformatics approaches including Fisher's exact test, k-means clustering, Tree determinant-residue identification, correlation of mutations, principal component analysis, and phylogenetic analysis failed to show statistically significant differences between sequences from cryoglobulin-negative and -positive patients. Our findings suggest that cryoglobulinemia may arise by virtue of as-yet-unidentified host- rather than virus-specific factors. Specific changes in HCV envelope sequence distribution are unlikely to be directly involved in the establishment of pathological B-cell monoclonal proliferation.  相似文献   

18.
19.
Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.  相似文献   

20.
The hypervariable region 1 (HVR1) of the putative second envelope glycoprotein (gp70) of hepatitis C virus (HCV) contains a sequence-specific immunological B-cell epitope that induces the production of antibodies restricted to the specific viral isolate, and anti-HVR1 antibodies are involved in the genetic drift of HVR1 driven by immunoselection (N. Kato, H. Sekiya, Y. Ootsuyama, T. Nakazawa, M. Hijikata, S. Ohkoshi, and K. Shimotohno, J. Virol. 67:3923-3930, 1993). We further investigated the sequence variability of the HCV genomic region that entirely encodes the envelope proteins (gp35 and gp70); these sequences were derived from virus isolated during the acute and chronic phases of hepatitis in one patient, and we found that HVR1 was a major site for genetic mutations in HCV after the onset of hepatitis. We carried out epitope-mapping experiments using the HVR1 sequence derived from the acute phase of hepatitis and identified two overlapping epitopes which are each composed of 11 amino acids (positions 394 to 404 and 397 to 407). The presence of two epitopes within HVR1 suggested that epitope shift happened during the course of hepatitis. Four of six amino acid substitutions detected in HVR1 were located within the two epitopes. We further examined the reactivities of anti-HVR1 antibodies to the substituted amino acid sequences within the two epitopes. HVR1 variants in both epitopes within the HVR1 escaped from anti-HVR1 antibodies that were preexisting in the patient's serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号