首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of compatible solutes is often regarded as a basic strategy for the protection and survival of plants under abiotic stress conditions, including both salinity and oxidative stress. In this work, a possible causal link between the ability of contrasting barley genotypes to accumulate/synthesize compatible solutes and their salinity stress tolerance was investigated. The impact of H(2)O(2) (one of the components of salt stress) on K(+) flux (a measure of stress 'severity') and the mitigating effects of glycine betaine and proline on NaCl-induced K(+) efflux were found to be significantly higher in salt-sensitive barley genotypes. At the same time, a 2-fold higher accumulation of leaf and root proline and leaf glycine betaine was found in salt-sensitive cultivars. The total amino acid content was also less affected by salinity in salt-tolerant cultivars. In these, potassium was found to be the main contributor to cytoplasmic osmolality, while in salt-sensitive genotypes, glycine betaine and proline contributed substantially to cell osmolality, compensating for reduced cytosolic K(+). Significant negative correlations (r= -0.89 and -0.94) were observed between Na(+)-induced K(+) efflux (an indicator of salt tolerance) and leaf glycine betaine and proline. These results indicate that hyperaccumulation of known major compatible solutes in barley does not appear to play a major role in salt-tolerance, but rather, may be a symptom of salt-susceptibility.  相似文献   

2.
The indole alkaloid gramine is toxic to animals and may play a defensive role in plants. Under certain conditions, shoots of barley cultivars such as `Arimar' and CI 12020 accumulate gramine (N,N-dimethyl-3-aminomethylindole) and lesser amounts of its precursors 3-aminomethylindole (AMI) and N-methyl-3-aminomethylindole (MAMI); other cultivars such as `Proctor' do not. When grown at optimal temperatures (21°C/16°C, day/night), Arimar contained a high level of gramine in the first leaf (approximately 6 milligrams per gram dry weight), but progressively less accumulated in successive leaves so that the gramine level in the shoot as a whole fell sharply with age. In Arimar and CI 12020 plants transferred at the two- to three-leaf stage from 21°C/16°C to supra-optimal temperatures (≥30°C/25°C), there was massive gramine accumulation in leaves which developed at high temperature, so that gramine level in the whole shoot remained high (about 3-8 milligrams per gram dry weight).

Proctor lacked both constitutive gramine accumulation in the first leaf and heat-induced gramine accumulation in later leaves. The following evidence indicates that this results from a lesion in the pathway of synthesis (tryptophan →→ AMI → MAMI → gramine) between tryptophan and AMI. (a) Proctor and Arimar leaves readily absorbed [14C]gramine, but neither cultivar degraded it extensively. (b) Arimar leaf tissue incorporated [14C]formate label into the N-methyl groups of gramine and MAMI, and converted [methylene-14C]tryptophan to AMI, MAMI, and gramine; Proctor leaf tissue did not, even when a trapping pool of unlabeled gramine was supplied. (c) Proctor converted [14C]MAMI to gramine as actively as Arimar. (d) Proctor incorporated [14C]formate label into gramine and MAMI when supplied with AMI; the ratio [14C]gramine/[14C]MAMI fell with leaf age, suggesting that the two N-methylations involve different enzymes. Inasmuch as Proctor leaf tissue did not methylate added tryptamine or tyramine, the N-methyltransferase(s) of gramine synthesis may be substrate specific.

In sterile culture at optimal temperatures, 10 millimolar gramine did not affect autotrophic growth of Arimar or Proctor plantlets or heterotrophic growth of callus. At supra-optimal temperature, plantlet growth was reduced by gramine although callus growth was not. We speculate that gramine-accumulating cultivars may suffer autotoxic effects at high leaf temperatures.

  相似文献   

3.
Accumulation of Free Proline at Low Temperatures   总被引:3,自引:0,他引:3  
The accumulation of free proline in the first leaves of barley, Hordeum distichum L., and wheat, Triticum aestivum L., in response to a range of low temperatures was examined with 10-day-old plants. In barley (cv. Prior) no proline accumulated at 8°C or above, but in wheat (cv. Gabo) proline accumulated at 12°C and lower temperatures. In barley, the first leaf survived for 29 days following transfer to 5°C and continued to accumulate proline throughout this period. In contrast, the first leaves of plants maintained at 20°C survived for 13 days only and accumulated no proline. Proline accumulation at low temperature was shown to be light-dependent, both in intact plants and excised leaf sections, and the light requirement could not be replaced by supplying leaf segments with precursors of proline. Proline accumulation in response to water stress was not light-dependent at 20°C but was at 5°C. Inter-specific and intra-specific variation in the extent of accumulation in response to low temperature was also examined. Considerable variation was encountered but there was no clear relationship with geographical distribution or chilling sensitivity for the species and no correlation with accumulation in response to water stress in the cultivars of barley examined.  相似文献   

4.
Quantitative powdery mildew resistance in compatible host-pathogen-combinations was measured by the number of pastules/cm2 leaf area. Spring barley cultivar ‘Proctor’ was significantly less infected than ‘Golden Promise”. Using these two cultivars (having no effective major resistance gene) as controls, MO- and AR-resistant cultivars were inoculated with virulent mildew isolates. ‘Mona”, ‘Grit’ and ‘Nudinka’ had a higher or, at least, the same level of quantitative resistance as ‘Proctor”. None of the remaining cultivars showed the high susceptibility expressed by ‘Golden Promise”. Ranking of host genotypes was nearly constant while that of mildew isolates varied considerably. Only a small portion of the observed variance was due to interaction between host cultivars and pathogen isolates. ‘Triesdorfer Diva’ gave a resistant infection type after inoculation with different AR-virulent isolates, indicating that this cultivar has major resistance other than that conditioned by gene Ml-a12.  相似文献   

5.
Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.  相似文献   

6.
Sánchez-Díaz  M.  García  J.L.  Antolín  M.C.  Araus  J.L. 《Photosynthetica》2002,40(3):415-421
The combined effects of water status, vapour pressure deficit (VPD), and elevated temperature from heading to maturity were studied in barley. Plants growing at high VPD, either under well-watered or water deficit conditions, had higher grain yield and grain filling rate than plants growing at low VPD. By contrast, water stress decreased grain yield and individual grain dry matter at any VPD. Water regime and to a lesser extent VPD affected 13C of plant parts sampled at mid-grain filling and maturity. The differences between treatments were maximal in mature grains, where high VPD increased 13C for both water regimes. However, the total amount of water used by the plant during grain filling did not change as response to a higher VPD whereas transpiration efficiency (TE) decreased. The net photosynthetic rate (P N) of the flag leaves decreased significantly under water stress at both VPD regimes. However, P N of the ears was higher at high VPD than at low VPD, and did not decrease as response to water stress. The higher correlation of grain yield with P N of the ear compared with that of the flag leaf support the role of ear as the main photosynthetic organ during grain filling under water deficit and high VPD. The deleterious effects of combined moderately high temperature and drought on yield were attenuated at high VPD.  相似文献   

7.
Changes in root- and leaf-soluble proteins were investigated in tomato after invasion by the root-knot nematode Meloidogyne javanica, or in barley and wheat after invasion by the cereal cyst nematode Heterodera avenae. Infection of susceptible tomato plants by M. javanica did not cause any change in the soluble-protein composition of leaves or roots compared with uninoculated plants at an early infection stage. No pathogenesis-related proteins (chitinase, glucanase, or P-14) were induced in the leaf apoplast. Changes in leaf proteins were not observed after invasion of wheat cultivars by H. avenae, whereas, in barley, a few changes in intercellular leaf proteins were recorded in resistant cultivars. These changes, however, were not the same among different H. avenae-resistant cultivars. Protein changes were found at an early stage of infection in barley and wheat roots infected with H. avenae, but no difference was found between resistant and susceptible cultivars.  相似文献   

8.
The influence of varying concentrations (0, 1, 3, 4, 5, 6, 8, and 10 % v/v) of neem (Azadirachta indica) leaf extract on drought stressed (40 % field capacity) quinoa (Chenopodium quinoa Willd.) plants was assessed. During the current study two cultivars of quinoa (V7 and V9) were used. This study revealed that water stress adversely affects the fresh and dry weight of shoots and roots as well as chlorophyll pigments (a and b) of both quinoa cultivars. In contrast, drought stress enhanced glycinebetaine (GB), free proline, phenolic content, hydrogen peroxide (H2O2), activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzymes, and relative membrane permeability (RMP). However, application of neem leaf extract improved the accumulation of key osmoprotectants like proline, GB and activities of enzymatic antioxidants. Our findings showed 5 % neem leaf extract is an effective treatment in counteracting the oxidative damage caused by water stress, thereby improving overall plant growth. Of both cultivars of quinoa, the response of cv. V9 to stress as well as foliar applied neem was relatively more promising.  相似文献   

9.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. The yeast Saccharomyces cerevisiae induces trehalose or glycerol synthesis but does not increase intracellular proline levels during various stresses. Using a proline-accumulating mutant, we previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. This mutant was recently shown to carry an allele of PRO1 which encodes the Asp154Asn mutant γ-glutamyl kinase (GK), the first enzyme of the proline biosynthetic pathway. Here, enzymatic analysis of recombinant proteins revealed that the GK activity of S. cerevisiae is subject to feedback inhibition by proline. The Asp154Asn mutant was less sensitive to feedback inhibition than wild-type GK, leading to proline accumulation. To improve the enzymatic properties of GK, PCR random mutagenesis in PRO1 was employed. The mutagenized plasmid library was introduced into an S. cerevisiae non-proline-utilizing strain, and proline-overproducing mutants were selected on minimal medium containing the toxic proline analogue azetidine-2-carboxylic acid. We successfully isolated several mutant GKs that, due to extreme desensitization to inhibition, enhanced the ability to synthesize proline better than the Asp154Asn mutant. The amino acid changes were localized at the region between positions 142 and 154, probably on the molecular surface, suggesting that this region is involved in allosteric regulation. Furthermore, we found that yeast cells expressing Ile150Thr and Asn142Asp/Ile166Val mutant GKs were more tolerant to freezing stress than cells expressing the Asp154Asn mutant.  相似文献   

10.
Mobilization of N from leaves of barley (Hordeum vulgare L.) during water stress, and the role of proline as a mobilized species, were examined in plants at the three-leaf stage. The plants responded to water stress by withdrawing about 25% of the total reduced N from the leaf blades via phloem translocation. Most of this N loss was during the first 2 days while translocation of 14C-photosynthate out of the stressed blade still remained active. Free proline accumulation in the blade was initially slow, and became more rapid during the 2nd day of stress. Although a major free amino acid, proline accounted for only about 5% of the total N (soluble + insoluble) retained in severely stressed blades. When the translocation pathway in water-stressed leaves was interrupted just below the blade by a heat girdle, a cold jacket, or by blade excision, N loss from the blade was prevented and proline began to accumulate rapidly on 1st day of stress. Little free proline accumulated in the blades until after the ability to translocate was lost. Proline was, however, probably not a major species of N translocated during stress, because proline N accumulation in heat-girdled stressed leaves was five times slower than the rate of total N export from intact blades.  相似文献   

11.
Decrease in soil water potential during vegetative and flowering stages of two cultivars of pipeon pea (Cajanus cajari) caused higher decrease in relative water content in cv. ICPL-151 than in cv. H-77-216. Both cultivars showed partial recovery during rehydration. Cv. H-77-216 also accumulated more proline and carbohydrates during stress and showed better drought tolerance than cv. ICPL-151.  相似文献   

12.
13.
Seven barley(Hordeum vulgäre L.) cultivars tested varied greatly in their responses to root medium salinity (electrical conductivity of 3, 5, 10, 15 and 20 dS nr-1)-lant growth was relatively more adversely affected than seed germination. Dry/fresh mass ratio increased at higher salinity levels in all barley cultivars indicating reduced water uptake. Higher K/Na ratio in plant shoots compared to that in the root medium solution indicated selective uptake of K that seems to be among processes involved in tolerance of cultivars to salinity stress.  相似文献   

14.
Traditional crops are extremely important for food production in low income, food-deficit countries (LIFDCs) where they continue to be maintained by socio-cultural preferences and traditional uses. Significant potential exists to improve these crops, one of which is to select for improved productivity during moisture stress conditions. Germplasm of Amaranthus tricolor, Amaranthus hypochondriacus and Amaranthus hybridus were subjected to various screening methods to measure metabolic and physiological changes during water stress. The activities of enzymes involved in the oxygen-scavenging system during abiotic stress conditions (superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR)), free proline production, leaf area (LA), cell membrane stability (CMS), leaf water potential (LWP) and relative water content (RWC) were measured in these three amaranth species during induced water stress. This study showed significant differences in metabolic responses during water deficit of the three species tested. Moisture stress and a decrease in RWC and LWP were first experienced in A. hybridus and A. hypochondriacus, followed by A. tricolor. There was an indirect correlation between leaf water status (RWC and LWP), enzyme activity, proline production and leaf area. The combined effect of GR, APX and SOD could ensure higher levels of regulation of the toxic effect of H2O2 which could be associated with drought tolerance in Amaranthus. Distinct differences in onset of proline accumulation and the amount of accumulated in leaves upon induced water stress was noticed for the three amaranth species tested. Proline accumulation during water stress conditions in amaranth seems to be indirect and could possibly have a protective role apart from osmoregulation during stress conditions. This contention is supported by the decrease in leaf area and high cell membrane stability for two of the species tested. This study forms part of a project aimed at the development of improved traditional crops to contribute to food production and quality for subsistence farmers in areas with low precipitation or variable rainfall patterns.  相似文献   

15.
Two cultivars of soybean (Glycine max [L.] Merr.) were grown in solution with up to 100 millimolar NaCl. Leaf solute potential was −1.1 to −1.2 megapascals in both cultivars without NaCl. At 100 millimolar NaCl leaf solute potential was −3.1 to −3.5 megapascals in Bragg and −1.7 megapascals in Ransom. The decrease in solute potential was essentially proportional to the concentration of NaCl. In both salt susceptible Bragg and salt semitolerant Ransom, leaf proline was no more than 0.4 micromole per gram fresh weight at or below 20 millimolar NaCl. At 40 and 60 millimolar NaCl, Bragg leaf proline levels were near 1.2 and 1.9 micromoles per gram fresh weight, respectively. Proline did not exceed 0.5 micromole per gram fresh weight in Ransom even at 100 millimolar NaCl. Proline accumulated in Bragg only after stress was severe enough to induce injury; therefore proline accumulation is not a sensitive indicator of salt stress in soybean plants.  相似文献   

16.
Many barley cultivars (e.g. Arimar) contain the indole alkaloid gramine, but some do not. Among seven gramine-free cultivars tested, two phenotypic classes were found: those with a normal level of the N-methyltransferase (NMT) activity that catalyzes the last two steps of gramine synthesis (e.g. Proctor); and those having neither NMT activity nor protein recognized by polyclonal antibodies raised against purified NMT (e.g. Morex).A 3 × 3 diallel cross with reciprocals was made using cultivars Arimar, Proctor and Morex. The pattern of occurrence of gramine and NMT activity among the F1 hybrids suggested that Proctor and Morex carried defective alleles of the same nuclear gene governing an early step in the indole alkaloid pathway, and that Morex also carried a recessive allele at a nuclear locus encoding NMT activity. However, no non-parental alkaloid phenotypes were found in the F2 generation from an Arimar × Morex cross and the ratio of progeny with gramine to those with no alkaloids was 3 : 1. One explanation of these results is tight linkage between genes controlling two of the steps in gramine biosynthesis.  相似文献   

17.
The complex nature of plant resistance to adverse environmental conditions, such as salinity and drought requires a better understanding of the stress-induced changes that may be involved in tolerance mechanisms. Here we investigate stress-related morpho-physiological effects during vegetative and reproductive growth in two Japonica rice cultivars (Bomba and Bahia) exposed to a range of NaCl concentrations from the seedling stage. The stress-related detrimental effects were observed either earlier or to a higher extent in cv. Bomba than in Bahia. Damages to the photosynthetic apparatus were related to loss of chlorophyll (Chl) and to a decrease of the maximum potential efficiency of PSII (F v /F m), affecting negatively net CO2 assimilation rate (P N). Stress-related leaf anatomical alterations were analysed during the vegetative and reproductive stages. The size of bulliform cells as well as dimensions related to the vascular system increased under mild stress but decreased in the longer term or under higher stress level. The pattern of the anatomical alterations observed at the reproductive stage under 20 mM NaCl was reflected in poor panicle development and yield loss, with effects more pronounced in cv. Bomba than in Bahia. In summary, our results show that some physiological and, particularly, leaf anatomical responses induced by NaCl stress are distinctive indicators of sensitivity to salt stress in rice cultivars.  相似文献   

18.
Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.  相似文献   

19.
Four popular mulberry cultivars (Morus indica L. cvs.V-1, MR-2, S-36 and K-2) were assessed for drought tolerance with an integration of selective approaches. The potted plants were subjected to two watering treatments for 75 days: control pots were watered up to 100% field capacity (FC) and stressed pots were maintained at 25–30% FC. Net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E) and instantaneous water use efficiency (WUEi) were the key parameters to assess photosynthetic gas exchange performance. Drought caused marked down-regulation in leaf gas exchange in all cultivars (cvs) except V-1 which maintained better Pn, gs, E and higher WUEi under severe water deficit. All the four cvs also showed differential antioxidative responses under water stress. Higher concentrations of carotenoids, ascorbic acid, glutathione, α-tocopherol and proline were observed in the leaf extracts of V-1, while minimum accumulation of those metabolites was recorded with K-2 and S-36. An endogenous loss of α-tocopherol and higher lipid peroxidation were encountered in K-2, S-36 and MR-2, whereas V-1 showed minimum lipid peroxidation under water deficit regimes. Comparative morpho-anatomical analysis revealed a well-developed root system and a better anatomical architecture in V-1 which could further contribute tolerance during drought stress.  相似文献   

20.
《Annals of botany》1996,77(6):605-613
To evaluate the effect of drought and vapour pressure deficit (VPD) on stomatal behaviour and gas exchange parameters, young kiwifruit vines (Actinidia deliciosavar.deliciosacv. Hayward) were exposed to alternating periods of drought and drought-relief over two growing seasons. Vines were grown either in the field or in containers. Stomatal conductance of fully-expanded leaves rapidly decreased as pre-dawn leaf water potential was reduced below a threshold value of -0.3MPa. Stomatal conductance reached minimum values of 10–20mmol m-2s-1. Transpiration rate was similarly sensitive to changes in leaf water status, whereas more severe drought levels were necessary to affect photosynthesis significantly. Net daily carbon gains were estimated at 4.7 and 2.7gm-2for irrigated and droughted vines, respectively. Gas exchange parameters recovered to values of irrigated vines within a few hours after relief of stress. Rate of recovery depended on the level of stress reached during the previous drought period. There was a steady decline in stomatal conductance when VPD was increased from 0.8 to 2.5kPa in both irrigated and droughted vines. The VPD at which stomatal conductance reached 50% of maximum values was 2.1–2.2kPa for both treatments. We conclude that stomata were highly sensitive to changes in soil water status and that midday depression of photosynthesis measured in kiwifruit vines was related to water deficits arising in the leaf because of both transpirational losses and to the direct effect of increasing VPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号