首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphokinase activity from a 0.5 M NaCl extract of purified porcine ovary nuclei has been resolved by Sephadex G-200 gel filtration into three forms of kinase, protein kinase I and III, both independent of adenosine 3':5'-monophosphate (cyclic AMP), and cyclic-AMP-dependent protein kinase II. Cyclic AMP-binding activity was associated with protein kinase II but not with protein kinases I and III. Protein kinases I, II, and III exhibited different cyclic nucleotide dependency and substrate specificity. Protein kinase II was inhibited by a heat-stable protein from rabbit skeletal muscle, whereas protein kinases I and III were not inhibited. According to previously established criteria [Traugh, J.A., Ashby, C.D. and Walsh, D.A. (1974) nuclear protein kinase II can be classified as cyclic-AMP-dependent protein kinase consisting of regulatory and catalytic subunits. Nuclear protein kinases I and III are cyclic-AMP-independent enzymes. Evidence for the identity of nuclear cyclic-AMP-dependent protein kinase II with cytosol (105 000 X g supernatant fraction) cyclic-AMP-dependent protein kinase was obtained in several ways. Nuclear and cytosol cyclic-AMP-dependent protein kinases exhibited identical elution characteristics on DEAE-cellulose and Sephadex G-200 indicating that both kinases are of similar molecular size and possess similar ionic charge. Both kinases exhibited an identical Km for ATP of 8 muM, showed similar substrate specificity, and revealed similar antigenic properties. Cyclic-AMP-dependent protein kinase II was also identified in nuclei isolated in nonaqueous media, eliminating the possibility that the cyclic-AMP-dependent protein kinase activity identified in nuclei isolated in aqueous media may have arisen as the result of cytoplasmic contamination. After incubation of neonatal porcine ovaries which lack nuclear cyclic-AMP-dependent protein kinase with 0.1 muM 8-p-chlorophenylthio cyclic AMP, considerable cyclic-AMP-dependent protein kinase II activity was identified in nuclei isolated in nonaqueous media. From these data it is concluded that the nuclear cyclic-AMP-dependent protein kinase II is related to or identical with the ovary cytoplasmic cyclic-AMP-dependent protein kinase, supporting the concept that nuclear cyclic-AMP-dependent protein kinase is of cytoplasmic origin.  相似文献   

2.
Human beta thyroid hormone receptor (c-erb A beta protein) produced by an Escherichia coli expression system was purified by sequential column chromatography followed by electroelution from an electrophoresis gel and an antibody was prepared. The antibody recognized a 56 kDa protein band in a partially purified rat hepatic nuclear thyroid hormone receptor fraction on Western blotting. Although multiple bands appeared on Western blotting of crude rat hepatic receptor preparations, a 56 kDa band was the most prominent and preadsorption of the antibody by purified c-erb A protein resulted in almost complete disappearance of the 56 kDa band, indicating that the 56 kDa band was formed by a specific antigen-antibody interaction. Furthermore, the 56 kDa protein appeared to co-elute with 3, 5, 3'-triiodo-L-thyronine binding activity in hydroxylapatite, Sephacryl S-200, and DNA-cellulose column chromatography of rat hepatic nuclear receptor, and sequential column purification resulted in selective enrichment of the 56 kDa band. These results suggest that the 56 kDa protein may be the major component of the rat hepatic thyroid hormone receptor.  相似文献   

3.
Nippostrongylus brasiliensis: occurrence of multiple protein kinases   总被引:1,自引:0,他引:1  
The presence of cyclic AMP-dependent protein kinase and phosvitin kinases, with activity independent of cyclic nucleotides, was shown in the intestinal nematode Nippostrongylus brasiliensis. The activity of the cyclic AMP-dependent protein kinase was found to be enhanced about 8-fold in the presence of 10(-7) M cyclic AMP; the apparent Km values were determined to be 20 microM and 80 microM for ATP and kemptide, respectively. The molecular weight of the holoenzyme was about 170 000. Two phosvitin kinases could be isolated and distinguished by their molecular weights of 600 000 and 40 000. The activity of the high-molecular-weight phosvitin kinase was effectively inhibited by suramin and heparin. The apparent Km values were found to be 30 microM and 0.1 mg/ml for ATP and phosvitin, respectively. In the case of the low-molecular-weight phosvitin kinase the apparent Km values for ATP and phosvitin were found to be 30 microM and 0.6 mg/ml, respectively. The investigation of different developmental stages of N. brasiliensis revealed a marked higher level of protein kinase activity in the L4 larvae compared to L3 larvae and adults.  相似文献   

4.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

5.
A cyclic AMP dependent protein kinase (PKA), its regulatory (R) and catalytic (C) subunits were purified to homogeneity from soluble extract of Microsporum gypseum. Purified enzyme showed a final specific activity of 277.9 nmol phosphate transferred min(-1) mg protein(-1) with kemptide as substrate. The enzyme preparation showed two bands with molecular masses of 76 kDa and 45 kDa on sodium dodecyl polyacrylamide gel electrophoresis. The 76 kDa subunit was found to be the regulatory (R) subunit of PKA holoenzyme as determined by its immunoreactivity and the isoelectric point of this subunit was 3.98. The 45 kDa subunit was found to be the catalytic (C) subunit by its immunoreactivity and phosphotransferase activity. Gel filtration using Sepharose CL-6B revealed the molecular mass of PKA holoenzyme to be 240 kDa, compatible with its tetrameric structure, consisting of two regulatory subunits (76 kDa) and two catalytic subunits (45 kDa). The specificity of enzyme towards protein acceptors in decreasing order of phosphorylation was found to be kemptide, casein, syntide and histone IIs. Purified enzyme had apparent K(m) values of 71 microM and 25 microM for ATP and kemptide, respectively. Phosphorylation was strongly inhibited by mammalian PKA inhibitor (PKI) but not by inhibitors of other protein kinases. The PKA showed maximum activity at pH 7.0 and enzyme activity was inhibited in the presence of N-ethylmaleimide (NEM) which shows the involvement of sulfhydryl groups for the activity of PKA. PKA phosphorylated a number of endogenous proteins suggesting the multifunctional role of cAMP dependent protein kinase in M. gypseum. Further work is under progress to identify the natural substrates of this enzyme through which it may regulate the enzymes involved in phospholipid metabolism.  相似文献   

6.
A nucleoplasmic histone kinase activity was isolated from livers of adult rats and purified 39-fold compared with whole nuclei by ultracentrifugation of the nuclear extract and Sephadex G-200 gel filtration in the presence of cyclic AMP. Analysis by polyacrylamide-gel electrophoresis as well as by gel filtration indicates a mol.wt. of approx. 60,000 for the catalytic subunit and 130000-150000 for the cyclic AMP-binding activity. The purified enzyme displays a 20-fold greater preference for histone fractions 1 and 2b than for any non-histone substrate, including alpha-casein. Endogenous protein in the preparation is not appreciably phosphorylated. The unfractioned enzyme is stimulated significantly by cyclic GMP, cyclic IMP and dibutyryl cyclic AMP as well as by cyclic AMP. The catalytic reaction requires Mg2+ (Km 1.9mM) and ATP (Km 15.4 micron). Half-maximal activity of the enzyme is observed with histone 2b at 12micron and histone 1 at a higher substrate concentration. The pH optima are 6.1 and 6.5 with histones 2b and 1 respectively. This nuclear protein kinase appears to be distinct from other nuclear enzymes that have been reported, on the basis of histone specificity, univalent-salt-sensitivity, pH optima and nuclear location. However, the enzyme possesses many properties similar to those of the cytoplasmic kinases, including cyclic AMP-dependence, Mg2+ and ATP affinities and pH optima. It differs from cytoplasmic protein kinase type I, the major form in the liver, with respect to bivalent-cation effects and response to the heat-stable protein kinase inhibitor protein isolated from ox heart.  相似文献   

7.
A soluble rat liver nuclear extract containing total RNA polymerase activities also exhibits appreciable amounts of protein kinase activity. This unfractionated protein kinase catalyzes the phosphorylation of both endogenous proteins and exogenous lysine-rich histone in the presence of [γ-32P]ATP and Mg2+. The optimal concentration of Mg2+ is 5 mm for histone phosphorylation and 25 mm for the phosphorylation of endogenous proteins. Cyclic AMP has no effect on the phosphorylation of lysine-rich histone by this unfractionated nuclear protein kinase. However, addition of cyclic AMP causes a reduction in the 32P-labeling of an endogenous protein (CAI) which can be characterized by its mobility during SDS-acrylamide gel electrophoresis and elution in the unbound fraction of a DEAESephadex column. If CAI is first labeled with 32P and then incubated with 10?6m cyclic AMP under conditions where protein kinase activity is inhibited, the presence of the cyclic nucleotide causes a loss of the 32P-labeling of this protein, implying the activation of a substrate-specific protein phosphatase. When rat liver RNA polymerases are purified by DEAE-Sephadex chromatography, protein kinase activity is found in the unbound fraction and in those column fractions containing RNA polymerase I and II. The fractionated protein kinases exhibit different responses to cyclic AMP, the unbound protein kinase being stimulated and the RNA polymerase-associated protein kinases being dramatically inhibited. A second protein (CAII) whose phosphorylated state is modified by cyclic AMP is found within the DEAE-Sephadex column fractions containing RNA polymerase II. The cyclic nucleotide in this case appears to reduce labeling of CAII by inhibition of the protein kinase activity which co-chromatographs with both CAII and RNA polymerase II. Based on molecular weight estimates, neither CAI nor CAII appears to be an RNA polymerase subunit. The identity of CAI as a protein factor whose phosphorylated state influences nuclear RNA synthesis is suggested by the fact that addition of fractions containing CAI to purified RNA polymerase II inhibits the activity of this enzyme, but only if CAI has been previously incubated in the presence of cyclic AMP.  相似文献   

8.
Protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) and cyclic adenosine 3',5'-monophosphate binding activities have been identified in zoospore extracts of the water mold Blastocladiella emersonii. More than 75% of these activities is found in the soluble fraction. Soluble protein kinase activity is resolved in three peaks(I, II and III) by DEAE-cellulose chromatography. Peak I is casein dependent and insensitive to cyclic AMP. Peak II is histone dependent and cyclic AMP independent; this enzyme is inhibited by the heat-stable inhibitor from bovine muscle. Peak III utilizes histone as substrate and is activated by cyclic AMP.  相似文献   

9.
Conditions influencing the cyclic AMP-dependence of protein kinase (ATP-protein phosphotransferase, EC 2.7.1.37) during the phosphorylation of histone were studied. Protein kinase from mouse liver cytosol and the two isoenzymes [PK (protein kinase) I and PK II] isolated from the cytosol by DEAE-cellulose chromatography were tested. A relation between concentration of enzyme and cyclic AMP-dependence was observed for both isoenzymes. Moderate dilution of isoenzyme PK II decreased the stimulation of the enzyme by cyclic AMP. Isoenzyme PK I could be diluted 200 times more than isoenzyme PK II before the same decrease in cyclic AMP-dependence appeared. Long-term incubation with high concentrations of histone increased the activity in the absence of cyclic AMP relative to the activity in the presence of the nucleotide. This was more pronounced for isoenzyme PK II than for isoenzyme PK I. The cyclic AMP concentration needed to give half-maximal binding of the nucleotide was the same as the cyclic AMP concentration (Ka) at which the protein kinase had 50% of its maximal activity. The close correlation between binding and activation is also found in the presence of KCl, which increased the apparent activation constant (Ka) for cyclic AMP. With increasing [KCl], a progressively higher proportion of the histone phosphorylation observed in cytosol was due to cyclic AMP-independent (casein) kinases, leading to an overestimation of the degree of activation of the cyclic AMP-dependent protein kinases present. The relative contributions of cyclic AMP-dependent and -independent kinases to histone phosphorylation at different ionic strengths was determined by use of heat-stable inhibitor and phospho-cellulose chromatography.  相似文献   

10.
Partial hepatectomy (HPX), which proliferatively activates the remaining liver cells, triggered two transient prereplicative surges in the total activities of cytoplasmic types I and II cyclic AMP-dependent protein kinase holoenzymes, and of nuclear catalytic subunits from cyclic AMP-dependent protein kinases. It also induced a transient prereplicative increase in the activities of a nuclear Ca2+-calmodulin-stimulable, protamine-phosphorylating protein kinase, and a nuclear poly(L-lysine)-phosphorylating, 105 kDa protein kinase. Thyroparathyroidectomy (TPTX) delayed and reduced the first surge and completely eliminated the second surge of both of the cytoplasmic cyclic AMP-dependent protein kinases, reduced the rises in the activity of nuclear catalytic subunits, and completely eliminated the surge of the Ca2+-calmodulin-stimulable protein kinase, but did not affect the surge of the nuclear 105 kDa protein kinase. The impairment of the responses of the two cyclic AMP-dependent protein kinases to HPX in TPTX rats was not accompanied by a rise in the level of heat-stable inhibitor of cyclic AMP-dependent protein kinase activity. One intraperitoneal injection of 1,25-dihydroxyvitamin D1 into TPTX rats immediately after HPX completely restored the post-HPX surges in the activity of type I cyclic AMP-dependent protein kinase, but the hormone, even in high doses, had little or not effect on the type II isoenzyme or the nuclear Ca2+-calmodulin-stimulable, protamine-phosphorylating enzyme.  相似文献   

11.
1. Four fractions of protein kinase (EC 2.7.1.37) activity (Peak IH, IIH, IIIC and IVC) have been resolved and partially purified from the 100 000 X g supernatant fraction of bovine parotid glands by DEAE-cellulose and phosphocellulose chromatographies. 2. The protein kinases of Peak IH and IIH were adenosine 3',5'-monophosphate (cyclic AMP) -dependent and had similar enzymic properties. The enzyme activities of Peak IIIC and IVC were cyclic-AMP independent, but there were some distinct differences between their properties. The protein kinase in Peak IIIC was activated by 0.2 M NaCl or KCl and phosphorylated casein preferentially as the substrate, utilizing only ATP as a phosphate donor. On the other hand, the protein kinase in Peak IVC was inhibited by univalent salts and preferred phosvitin to casein, utilizing either ATP or GTP as a phosphate donor. 3. Tolbutamide increased the Km value for ATP and the dissociation constant for cyclic AMP, resulting in the inhibition of cyclic-AMP dependent protein kinase activity in the presence of cyclic AMP. Tolbtamide and its carboxy derivative, 1-butyl-3-p-carboxyphenylsulfonylurea, exerted almost no inhibitory effect on either the cyclic-AMP dependent protein kinase activities in the absence of cyclic AMP or on the cyclic-AMP independent protein kinase activities.  相似文献   

12.
Purified bovine adrenocortical cytochrome P-450scc (specific for cholesterol side chain cleavage in the inner mitochondrial membrane) was selectively phosphorylated in vitro by a Ca2+-activated, phospholipid-sensitive protein kinase (protein kinase C) preparation, whereas cyclic AMP dependent and two cyclic nucleotide independent kinases were ineffective. Cytochrome P-450scc incorporated a maximum of 4 mol of phosphate in the presence of protein kinase C within 15 min at 30 degrees C, with apparent Km and Vmax of 0.14 mumol and 0.76 pmol/min, respectively. Serine and threonine were the two target aminoacids phosphorylated in a ratio of about 1:1. In the presence of 1 microM Ca2+, a mixture of phosphatidylserine and diolein (or a potent tumor promoter phorbol ester) was required for optimal cytochrome P-450scc phosphorylation. In addition, purified inner mitochondrial membrane preparations from adrenocortical mitochondria were found to contain protein kinase C activity. These findings, together with the previous demonstration that activators of protein kinase C such as a potent phorbol ester activates steroidogenesis of intact adrenocortical cells, suggest that phosphorylation of P-450scc should be examined for its possible role in the regulation of adrenocortical functions.  相似文献   

13.
1. Extracts from rat mammary gland nuclei contain cyclic AMP -independent protein kinases which phosphorylate casein rather than histone. 2. A major increase in nuclear protein kinase activity occurred during late pregnancy and was maintained with the onset of lactation. 3. Two major peaks of activity were resolved by chomatography of nuclear extracts on DEAE-Sephadex; the first (NI) appeared in the void volume and the second (NII) was eluted by 0.05-0.12 M ammonium sulfate. Several other regions of lesser activity were also present. 4. Protein kinases in the cytosol 105,000 times g supernatant, precipitated by 70 percent ammonium sulfate, dialyzed against buffer, and chromatographed on DEAE-Sephadex, yielded a major components phosphorylated histone in preference to casein, and this was stimulated by cyclic AMP if histone was the substrate, but only the first (void volume) fraction was cyclic AMP-dependent when casein was used. 5. Most of RNA polymerases Ib and II, derived from the nucleolus and nucleoplasm, respectively, appeared in column fractions distinct from those containing the major NI and NII protein kinases. 6. Cyclic AMP altered the amount of RNA product synthesized by polymerases Ib and II, but the explanation for this is unknown. Due to their elution profiles and cyclic AMP-independence, protein kinases NI and NII are excluded from playing a catalytic role in these effects; participation of quantitatively minor protein kinases which co-elute with polymerase Ib and II is not yet excluded.  相似文献   

14.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

15.
Cyclic AMP-dependent protein kinases (EC 2.7.1.37; ATP:protein phosphotransferase) in the human diploid fibroblast WI-38 and an SV40-transformant WI-38-VA13-2RA (VA13) have been compared on the basis of their concentrations in cells, isoenzyme composition and susceptibility to hormonal activation. In high population density cultures, total soluble cyclic AMP-dependent kinase activities measured with histone were essentially the same in WI-38 and VA13. Two soluble protein kinase forms separated by chromatography on DEAE-cellulose were present in both cell lines. The concentration of cyclic AMP required for half-maximal activation of both enzyme forms was 10-30 nM. Overall kinase stimulation was greater for the Peak I enzymes. Kinase activation induced in the presence of 0.5 M KCl was more rapid and complete for the Peak I enzymes. Under conditions which elevated the concentration of cyclic AMP in WI-38 and VA13 cells the activities of the soluble histone kinases were increased. Incubation of the cells with either of 5.7 micronM prostaglandin E1 or 1 micronM isopropylnorepinephrine induced complete activation of the cyclic AMP-dependent histone kinases within 5 min and maintained the effect for 20 min. When intracellular cyclic AMP levels were raised by prostaglandin E1, activation of glycogen phosphorylase (assayed-AMP) suggested that this enzyme cascade involving cyclic AMP-dependent protein kinase(s) was intact and responsive in both cell lines.  相似文献   

16.
When resting confluent monolayers of WI-38 fibroblasts are stimulated to proliferate by serum, DNA synthesis begins to increase between 15-18 h after stimulation. Chromatin-bound protein kinase activity increases in stimulated cells within 1 h after the nutritional change, concomitant with an increase in the template activity of nuclear chromatin. Addition of dibutyryl 3' : 5'-cyclic adenosine monophosphate (dibutyryl cyclic) AMP to the stimulating medium inhibits the entrance of cells into S phase, but only if dibutyryl cyclic AMP (5-10(-4) M) is added before the onset of DNA synthesis. The increases in chromatin template activity and in the chromatin-bound kinase activity are not inhibited by dibutyryl cyclic AMP in the early hours after stimulation, but are completely inhibited after the 5th hour from the nutritional change. This seems to indicate that in stimulated WI-38 cells, dibutyryl cyclic AMP exerts its inhibitory action somewhere between 5 and 12 h after stimulation. A number of protein kinase activities were extracted from chromatin with 0.3 M NaCl and partially resolved on a phosphocellulose column. Two distinct peaks of protein kinase activity appeared to be markedly increased in WI-38 cells 6 h after serum stimulation. Both peaks of increased activity were inhibited by dibutyryl cyclic AMP in vivo. Adenosine, sodium butyrate and adenosine 5'-monophosphate (AMP) do not inhibit the increase in DNA synthesis nor the increase in protein kinase activity. The results suggest that stimulation of cell proliferation in confluent monolayers of WI-38 cells causes an increase (or the new appearance) of certain chromatin-bound protein kinases, and that this increase is inhibited by cyclic AMP in vivo.  相似文献   

17.
Cyclic nucleotide-independent protein kinase activity bound to cytoplasmic and nuclear polyribsomes from non-infected and adenovirus-infected HeLa cells was compared. The enzymes catalysed the incorporation of phosphate from gamma-(32)P-labelled ATP or GTP into acid-precipitable material in the absence of exogenous substrates. Their activity was not affected by cyclic AMP or cyclic GMP and was not inhibited by a cyclic nucleotide-dependent protein kinase-inhibitor protein. The kinases are tightly bound to polyribosomes of either origin from infected and non-infected cells, since treatment with 0.5m-NaCl did not dissociate the activity. The enzymes and the enzyme-associated endogenous substrates of cytoplasmic polyribosomes are significantly different from those of the nucleus, and adenovirus infection of the cells did not alter the nature of the enzymes or the substrates at 18-20h after infection. Nuclear kinases catalysed 3-4-fold more phosphate incorporation than did the cytoplasmic kinases. They did not phosphorylate endogenous substrates in the cytoplasmic preparations, and vice versa, which suggests that such substrates for cytoplasmic and nuclear kinases are specific. Polyacrylamide-gel electrophoresis of the phosphorylated proteins revealed the presence of a higher number of endogenous substrates in the nuclear preparation. The nuclear kinases phosphorylated all histones from HeLa cells, but the cytoplasmic ones phosphorylated predominantly the histone of mol.wt. 12000. Bovine heart kinase phosphorylated several low-molecular-weight cytoplasmic proteins and no nuclear proteins. With a DEAE-cellulose column either enzyme activity could be resolved into a number of peaks. The substrate specificities of these peaks indicate that there are at least two different forms of the enzyme in each preparation of polyribosomes.  相似文献   

18.
Myocardial acidic non-histone nuclear proteins (NHPs) contain endogenous protein kinase activity. Phosphocellulose chromatography of purified NHPs identifies nine separate peaks of protein kinases which can phosphorylate both endogenous and exogenous substrates to a variable degree; endogenous NHPs are the best substrates. Cyclic AMP-stimulated protein kinase induced phosphorylation of endogenous and exogenous substrates; the extent of this stimulation varied according to the protein kinase fraction and substrate used. Cyclic AMP also enhanced NHP-induced stimulation of RNA polymerase activity. This enhancement was dependent on protein kinase-induced phosphorylation of NHPs since it was prevented by alkaline phosphatase pretreatment. It is concluded that nuclear protein kinases regulate myocardial RNA synthesis by enhancing phosphorylation of NHPs and that this regulation is under cyclic AMP control.  相似文献   

19.
Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.   总被引:1,自引:0,他引:1       下载免费PDF全文
A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band.  相似文献   

20.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号