首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleometrosis (colony founding by multiple queens) may improve life history characteristics that are important for early colony survival. When queens unite their initial brood, the number of workers present when incipient colonies open may be higher than for single queen colonies. Further, the time until the first worker emerges may shorten. For territorial species and species that rob brood from neighbouring colonies, a faster production of more workers may improve the chance of surviving intraspecific competition. In this study, the time from the nuptial flight to the emergence of the first worker in incipient Oecophylla smaragdina Fabr. colonies founded by 1–5 queens was compared and the production of brood during the first 68 days after the nuptial flight was assessed. Compared to haplometrotic colonies, pleometrotic colonies produced 3.2 times more workers, their first worker emerged on average 4.3 days (8%) earlier and the queen’s per capita egg production almost doubled. Further, colony production was positively, correlated with the number of founding queens and time to worker emergence was negatively correlated. These results indicate that pleometrotic O. smaragdina colo-nies are competitively superior to haplometrotic colonies as they produce more workers faster and shorten the claustral phase, leading to increased queen fecundity.  相似文献   

2.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

3.
Abstract In a colony headed by a single monandrous foundress, theories predict that conflicts between a queen and her workers over both sex ratio and male production should be intense. If production of males by workers is a function of colony size, this should affect sex ratios, but few studies have examined how queens and workers resolve both conflicts simultaneously. We conducted field and laboratory studies to test whether sex-ratio variation can be explained by conflict over male production between queen and workers in the primitively eusocial wasp Polistes chinensis antennalis.
Worker oviposition rate increased more rapidly with colony size than did queen oviposition. Allozyme and micro-satellite markers revealed that the mean frequency of workers' sons among male adults in queen-right colonies was 0.39 ± 0.08 SE (n = 22). Genetic relatedness among female nestmates was high (0.654–0.796), showing that colonies usually had a single, monandrous queen. The mean sex allocation ratio (male investment/male and gyne investments) of 46 queen-right colonies was 0.47 ± 0.02, and for 25 orphaned colonies was 0.86 ± 0.04. The observed sex allocation ratio was likely to be under queen control. For queen-right colonies, the larger colonies invested more in males and produced reproductives protandrously and/or simultaneously, whereas the smaller colonies invested more in females and produced reproductives protogynously. Instead of positive relationships between colony size and worker oviposition rate, the frequency of workers' sons within queen-right colonies did not increase with colony size. These results suggest that queens control colony investment, even though they allow worker oviposition in queen-right colonies. Eggs laid by workers may be policed by the queen and/or fellow workers. Worker oviposition did not influence the outcome of sex allocation ratio as a straightforward function of colony size.  相似文献   

4.
Summary: This work investigated Augochloropsis iris, its annual colony cycle, brood size and survival rate, caste differentiation, and sex ratio, and is the first detailed account of a clearly eusocial species of this genus. The population studied is located in the Campos do Jordão State Park, São Paulo, Brazil. The annual colony cycle extends from August to March and consists of three phases of cell provisioning separated by two phases of inactivity, and followed by an emergence of future queens and males. Provisioning during the first phase is carried primarily out by solitary females. The daughters, after emerging from the cells, remain in the natal nests, carrying out foraging activities, while the mother engages in reproduction. New nests are initiated during each of the provisioning phases by solitary females, principally by females from the second-phase brood which, soon after emerging from the cells, leave their natal nests to found their own nests, which they provision during the third phase. The females resulting from the third-phase brood in general mate and excavate their own nests, in which they diapause, with provisioning delayed until the following August. On average, the queens are significantly larger (5%) than the workers. In general, the workers do not have developed ovaries, but all are mated. Kin selection can be accepted as the selective force responsible for worker behavior of A. iris in eusocial colonies when the queen has mated once and semisocial colonies if the queen mated only once. The percentage of males produced in the first, second and third broods and in the brood of new nests founded by solitary females active in the second and third phases was: 20.7%, 22.2%, 13.3% and 0.0% respectively. The resultant sex ratio of the third brood suggests that the third-phase workers of eusocial nests are at least in partial control of their colony's sex ratios, in cases where the queens mated only once.  相似文献   

5.
Physogastric queens of Melipona marginata were removed from their colonies in order to verify the acceptance of a new queen by workers. Colony strength was evaluated according to queen oviposition rate and comb diameters. Replacement was observed seven times. Its occurrence and speed related positively to colony strength, independently of queen's age. In weak colonies, queen replacement was observed only once, following colony population increase that occurred after introduction of combs from another colony. Worker oviposition after queen removal was observed three times: in a strong colony with virgin queens and males, and in two of the weak colonies. In the first two or three days of new queen oviposition, during which most of the eggs were eaten by the queen, worker oviposition preceded almost all provisioning and oviposition processes (POPs). After this period, worker oviposition decreased until it reached around 25% of the POPs. Daily oviposition rate of young queens decreased or was even interrupted by hatching of their first brood.  相似文献   

6.
Intraspecific usurpation of incipient fire ant colonies   总被引:1,自引:0,他引:1  
Brood raiding, or reciprocal stealing of brood, is common amongincipient colonies of the fire ant Solenopsis invicta. Paradoxically,workers from a colony that loses its brood during a raid oftenabandon their nest and join the winning colony. Queens abandonedby their workers may then migrate from their original nest siteand attempt to forcefully usurp another incipient colony bydisplacing that colony's queen or queens. This study examinedfactors that influence the success of usurpation attempts. Queensattempting to usurp a nearby colony after laboratory brood raidswere successful in less than 30% of trials. Usurpation attemptswere more successful if workers familiar to the migrating queenwere present in the nest, as would happen if a queen were tofind the colony to which her workers had moved. Cross-fosteringexperiments showed that this effect was due to familiarity ratherthan relatedness. Usurpation attempts were less successful ifthey were delayed by 16 h. The probability of usurpation successwas not reduced by doubling the number of defending workersin the invaded colony. However, colonies founded by three queenswere almost always able to resist usurpation attempts. Theseresults support the hypothesis that workers abandon their natalcolony after losing a brood raid to increase the likelihoodthat their queen can usurp the colony to which they migrate.These results also provide the first evidence that coloniesof ants founded by several queens are better able to resistusurpation attempts than colonies founded by a single queen  相似文献   

7.
Sex ratios in social insects have become a general model for tests of inclusive fitness theory, sex ratio theory and parent–offspring conflict. In populations of Formica exsecta with multiple queens per colony , sex ratios vary greatly among colonies and the dry-weight sex ratio is extremely male-biased, with 89% of the colonies producing males but no gynes (reproductive females). Here we test the queen-replenishment hypothesis, which was proposed to explain sex ratio specialization in this and other highly polygynous ants (i.e. those with many queens per nest). This hypothesis proposes that, in such ants, colonies produce gynes to recruit them back into the colony when the number of resident queens falls below a given threshold limiting colony productivity or survival. We tested predictions of the queen-replenishment hypothesis by following F. exsecta colonies across two breeding seasons and relating the change in effective queen number with changes in sex ratio, colony size and brood production. As predicted by the queen-replenishment hypothesis, we found that colonies that specialized in producing females increased their effective queen number and were significantly more likely to specialize in male production the following year. The switch to male production also coincided with a drop in productivity per queen as predicted. However, adoption of new queens did not result in a significant increase in total colony productivity the following year. We suggest that this is because queen production comes at the expense of worker production and thus queen production leads to resource limitation the following year, buffering the effect of greater queen number on total productivity.  相似文献   

8.
In order to elucidate the dominant–subordinate relationship between the foundress and workers, five colonies of the paper wasp Polistes japonicus were observed in a netted and covered cage located outdoors. The number of workers in each colony ranged from four to eight. Workers were divided into first and second broods. Abdominal wagging and ovipositing were performed almost exclusively by the foundress throughout colony development. However, an analysis of aggressive encounters indicated that although the foundress hardly received dominance behaviors (aggression) from workers, it lacked either partially or completely the following characteristics of the queen that are usually seen in paper-wasp colonies with independent-founding queens (except in one colony that produced no second brood): the queen being socially dominant over any worker (the queen had more wins than losses in one-on-one dominance contests with any worker), exhibiting the highest frequency of dominance behaviors, and directing dominance behaviors primarily toward the socially most-dominant worker. In particular, during the mixed-brood period (when all first- and second-brood workers were present on the nest) the foundress hardly exhibited dominance behaviors toward socially dominant workers (mainly second brood) but frequently directed dominance behaviors toward socially subordinate workers (mainly first brood). The foundress disappeared in two colonies before the reproductives emerged; in these colonies the socially most-dominant worker inherited the colony and laid many eggs. The frequency of abdominal wagging by these two foundresses decreased during colony development, while it did not in the other colonies. This suggests that abdominal wagging provides information about the vigor of the performer. The superseder was socially dominant over all other workers, but spent little time wagging its abdomen and allowed some workers to lay eggs.  相似文献   

9.
Summary. A numerical model has been developed to calculate the total number of transits in each worker foraging category for the 170 days of development of a successful colony. Seven categories of workers are considered: two of outgoers (earth carriers and non-earth outgoers), and five of incomers (pulp, flesh, full fluid, and partial fluid carriers, and empty incomers). The model allows for variation in the length of the foraging day and for hypothetical smaller and larger colonies. Estimates of each category are given for the queen, smaller and larger worker colony. Estimates of 1.3–4.5 million, for smaller and larger colonies, each of incomer and outgoer transits are calculated from the model. The slight excess of outgoer over incomer transits could be accounted for, in part, by the mortality of workers away from the nest. Percentages of each worker category are given for the pre-exponential small-cell, exponential small-cell and large-cell colonies. It is hypothesized that there is a balance between fluid and solid transits for efficient brood rearing. There may be restraints in the social wasp system that restrict brood rearing. Estimates which are independent of the foraging model are calculated for the number of loads to create the nest cavity and build the pulp nest which broadly agree with the model outputs.Received 15 July 2004; revised 15 December 2004; accepted 23 December 2004.  相似文献   

10.
1. In incipient termite colonies, biparental brood care rapidly shifts towards alloparental brood care. This transition was suggested to recapitulate the evolutionary trajectory from subsocial wood roach ancestors to eusociality in termites. 2. Incipient colonies of the subterranean termite Coptotermes gestroi (Wasmann) were investigated to determine if this transition was irreversible and if the burden of brood care on the first alloparents could be measured. To do so, the initial size of the work force necessary for an incipient colony to survive once the brood care became alloparental was determined. 3. The results of the study show that within 5 months after foundation, brood care duties were fully transferred to workers and the primary reproductives became irreversibly dependent on these workers for survival, reproduction, and colony growth. 4. Once the brood care became strictly alloparental, the presence of a single worker was enough to maintain the survival of the king and queen, confirming that ‘reversed parental care’ was also achieved. However, major brood loss and suppressed egg‐laying activity from the queen was observed, suggesting that the burden of brood care was too high for a single worker to absorb. Therefore, once brood care has shifted to alloparents, a critical number of workers is necessary to prevent brood loss and initiate colony growth. 5. As the initial cost of brood care is rapidly absorbed with colony growth in termites, the performance in brood care of the first few alloparents in a subsocial wood roach ancestor may have contributed to the emergence of eusociality in this clade.  相似文献   

11.
A single-locus two-allele model is analyzed to determine the invasion conditions for facultative biasing of colony sex allocation by hymenopteran workers in response to queen mating frequency, for a situation in which colonies have a single queen mated to one or two males. Facultative biasing of sex allocation towards increased male production in double mated colonies and increased female production in single mated colonies can both invade when the population sex allocation ratio is at the worker optimum. However, when the population sex allocation ratio is more male biased than the worker optimum, plausibly due to mixed queen and worker control, it is likely that only increased female allocation in colonies perceived by the workers to have single mated queens can invade. In this case, the frequency of mistakes made by workers in assessing queen mating frequency is an important constraint on the invasion of facultative male biasing in colonies perceived to have a double mated queen. When the population sex allocation ratio is not between the optima for workers in single and double mated colonies, plausibly due to strong queen control, then facultative biasing cannot invade. In this situation, workers in all colonies should attempt to bias allocation towards increased females. Worker male production in queenright colonies (provided not all males are worker-derived), unequal sperm use by double mated queens, and the amount of facultative biasing, do not alter these results.  相似文献   

12.
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single‐queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker) generations cohabiting within an ant colony.  相似文献   

13.
REPRODUCTIVE SKEW AND SPLIT SEX RATIOS IN SOCIAL HYMENOPTERA   总被引:1,自引:0,他引:1  
Abstract I present a model demonstrating that, in social Hymenoptera, split sex allocation can influence the evolution of reproductive partitioning (skew). In a facultatively polygynous population (with one to several queens per colony), workers vary in their relative relatedness to females (relatedness asymmetry). Split sex‐ratio theory predicts that workers in monogynous (single‐queen) colonies should concentrate on female production, as their relatedness asymmetry is relatively high, whereas workers in the polygynous colonies should concentrate on male production, as their relatedness asymmetry is relatively low. By contrast, queens in all colonies value males more highly per capita than they value females, because the worker‐controlled population sex ratio is too female‐biased from the queens' standpoint. Consider a polygynous colony in a facultatively polygynous population of perennial, social Hymenoptera with split sex ratios. A mutant queen achieving reproductive monopoly would gain from increasing her share of offspring but, because the workers would assess her colony as monogynous, would lose from the workers rearing a greater proportion of less‐valuable females from the colony's brood. This sets an upper limit on skew. Therefore, in social Hymenoptera, skew evolution is potentially affected by queen‐worker conflict over sex allocation.  相似文献   

14.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

15.
The failure of bumblebee queens to enthusiastically start a colony under laboratory conditions may be due to lack of oviposition during an experiment, a long delay in oviposition from the termination of hibernation, and failure to rear a large first brood. In the present study, the use of frozen male pupae to start the colony with the assistance of bumblebee workers rather than fresh, young, male pupae was investigated under controlled room temperature and humidity conditions. The period of initiation of the colony decreased with an increase in the number of worker helpers from one to six. The period was as short as 3.9 days in the presence of six worker helpers. Second and third broods also started earlier with the help of workers. The rate of first worker production per egg cup was double that of the normal method (i.e. without worker helpers). Egg eating behavior of the queen was not found in the first brood if more than two workers helped the development of the larvae. Four worker helpers were found to be sufficient, as they could produce 100% colony foundation and 91.46% first worker production colonies. This study showed that using frozen old pupae is a good stimulator for colony foundation in the presence of four bumblebee worker helpers.  相似文献   

16.
Theory predicts that altruism is only evolutionarily stable if it is preferentially directed towards relatives, so that any such behaviour towards seemingly unrelated individuals requires scrutiny. Queenless army ant colonies, which have anecdotally been reported to fuse with queenright foreign colonies, are such an enigmatic case. Here we combine experimental queen removal with population genetics and cuticular chemistry analyses to show that colonies of the African army ant Dorylus molestus frequently merge with neighbouring colonies after queen loss. Merging colonies often have no direct co-ancestry, but are on average probably distantly related because of overall population viscosity. The alternative of male production by orphaned workers appears to be so inefficient that residual inclusive fitness of orphaned workers might be maximized by indiscriminately merging with neighbouring colonies to increase their reproductive success. We show that worker chemical recognition profiles remain similar after queen loss, but rapidly change into a mixed colony Gestalt odour after fusion, consistent with indiscriminate acceptance of alien workers that are no longer aggressive. We hypothesize that colony fusion after queen loss might be more widespread, especially in spatially structured populations of social insects where worker reproduction is not profitable.  相似文献   

17.
Honeybee workers generally refrain from personal reproduction when a queen is present. Workers discern the presence and fecundity of the queen via volatile pheromones that permeate throughout the colony. Pheromones are emitted both by the queen herself and by the brood that she produces. If pheromone production is disrupted, some workers initiate egg laying. The Eastern honeybee Apis cerana is unusual in that workers have high levels of ovary activation even in the presence of a queen. To investigate the effect of disruption to pheromone dispersal, we fitted three A. cerana colonies with vertical queen excluders, thus splitting the colonies into a half containing a queen and a half without a queen. We regularly sampled adult workers from both sides of the excluder for 3 weeks. We also sampled workers from three control colonies that did not contain excluders. We found a significant increase in worker ovary activation 3 days after addition of excluders, suggesting that the reduced dispersal of pheromones allowed some workers to become reproductively active. Workers attempted to rear queen cells on the queenless halves of all three colonies. Queen-rearing ceased on day 9, at which time no queen-laid brood remained on the queenless halves of the colonies. Ovary activation rates continued to climb until day 9 and then gradually began to decline. With the exception of one egg, we did not observe worker-laid brood on the queenless side of the colonies, suggesting that workers continued policing eggs laid by workers. We conclude that if the distribution of brood pheromone is impeded, workers prepare to supersede their queen, accompanied by high levels of worker ovary activation. However, because workers continue to police each other, high ovary activation does not result in worker-produced drones.  相似文献   

18.
Abstract.— We investigated sex allocation in a Mediterranean population of the facultatively polygynous (multiple queen per colony) ant Pheidole pallidula . This species shows a strong split sex ratio, with most colonies producing almost exclusively a single-sex brood. Our genetic (microsatellite) analyses reveal that P. pallidula has an unusual breeding system, with colonies being headed by a single or a few unrelated queens. As expected in such a breeding system, our results show no variation in relatedness asymmetry between monogynous (single queen per colony) and polygynous colonies. Nevertheless, sex allocation was tightly associated with the breeding structure, with monogynous colonies producing a male-biased brood and polygynous colonies almost only females. In addition, sex allocation was closely correlated with colony total sexual productivity. Overall, our data show that when colonies become more productive (and presumably larger) they shift from monogyny to polygyny and from male production to female production, a pattern that has never been reported in social insects.  相似文献   

19.
Summary Proximate control of colony dynamics was studied in the primitively eusocial halictine beeLasioglossum (Dialictus) zephyrum using allozyme markers. The results indicate that workers produce on average 15% of the male brood (range=0–50%) in small laboratory colonies made up of unrelated, single-generation, uninseminated females. This proportion is not influenced by colony size, but is influenced by the relative size of the queen. Large queens are more successful in dominating their workers than are small queens, the queen being defined as the female that is the mother of most of the brood produced in the colony. Older and larger females tend to become queens. Thus, while small differences in age (up to 4 days) influence which female becomes a queen, her ability to control her workers is primarily influenced by her relative size. The proportion of reproduction that is co-opted by the queen is negatively correlated with colony reproductivity (the number of males/day/female). Colony reproductivity is also negatively correlated with the standard deviation in size among females.  相似文献   

20.
Insect societies are hallmarks of cooperation because one or a few queens monopolize reproduction and several non-reproductive workers cooperatively raise brood. However, the loss of the queen exposes a colony to potential reproductive conflict, which is resolved only after a new queen takes over. We studied queen succession in natural and experimental colonies of the primitively eusocial wasp Ropalidia marginata to understand the proximate behavioral strategies involved in the resolution of this conflict. Previous work has shown that in this species, experimental queen removal always results in only one worker becoming hyper-aggressive and taking over the colony as its next queen, without ever being challenged. Here we show that even during natural queen turnover, one and only one worker becomes hyper-aggressive and takes over as the next queen, without being challenged. During natural queen turn-over, aggression of the successor may sometimes begin before the loss of the old queen and may sometimes decline more rapidly, unlike in the case of experimental queen removal. The successor begins to lay eggs sooner after a natural queen turn-over as compared to experimental queen removal. This is expected because workers might detect the gradual decline of the queen preceding her disappearance. Because queen succession is expected to be more prevalent in tropical perennial species, we expect natural selection to have favored such an orderly queen succession so that a route to direct fitness is available without significant reduction in cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号