首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. When females are inseminated by multiple males, male paternity success (sperm precedence) is determined by the underlying processes of sperm storage and sperm utilization. Although informative for many questions, two-male sperm competition experiments may offer limited insight into natural mating scenarios when females are likely to mate with several males. In this study, genetic markers in Tribolium castaneum are used to trace paternity for multiple sires, and to determine whether displacement of stored sperm that occurs after a third mating equally affects both previous mates, or if fertilizations are disproportionately lost by the female's most recent mate. For 20 days after triple-matings, first males retain significantly higher paternity success (relative to first male paternity in double-matings) compared with second males. These results demonstrate that when females remate before sperm mixing occurs, sperm stratification results in differential loss of sperm from the most recent mate. This study provides insight into the mechanisms underlying sperm precedence in a promiscuous mating system, and suggests that T. castaneum females could limit paternity success of particular mates by remating with more highly preferred males.  相似文献   

2.
Polyandrous females often mate with more than two males, and yet most studies of postcopulatory sexual selection involve only two males. In insects, second-male sperm precedence is usually taken as evidence of overall last-male sperm precedence despite some studies to the contrary. Furthermore, the processes or mechanisms causing the patterns are often unknown and yet are important when estimating how postcopulatory sexual selection might act on males. Whether the patterns and processes change in normal sperm competitive situations and the effects of other factors besides mating order need to be examined to better assess the evolutionary potential of postcopulatory sexual selection. In this study, I assessed the effects of mating interval and number of mating males on sperm precedence patterns and their causal mechanisms in the mealworm beetle, Tenebrio molitor. Last-male sperm precedence was the same when two or three males mated, but also depended on mating intervals and hence mechanisms of paternity bias. However, when females mated with many males, one of the mechanisms no longer created last-male sperm precedence. This example illustrates the importance of knowing both the patterns and mechanisms of paternity bias and whether they change depending on female mating frequency to make reasonable inferences about the potential for postcopulatory sexual selection on males. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

3.
Sperm competition has been studied in many gonochoric animals but little is known about its occurrence in simultaneous hermaphrodites, especially in land snails. The reproductive behaviour of the land snail Helix aspersa involves several features, like multiple mating, long-term sperm storage and dart-shooting behaviour, which may promote sperm competition. Cryptic female choice may also occur through a spermatheca subdivided into tubules, which potentially allows compartmentalized sperm storage of successive mates. In order to determine the outcome of postcopulatory sexual selection in this species, we designed a cross-breeding experiment where a recipient ('female') mated with two sperm donors ('males'). Mates came from either the same population as the recipient or from a distinct one. To test for the influence a recipient can have on the paternity of its offspring, we excluded the effects of dart shooting by using only virgin snails as sperm donors because they do not shoot any dart before their first copulation. We measured the effects of size of mates as well as time to first and second mating on second mate sperm precedence (P2; established using microsatellite markers). Multiple paternity was detected in 62.5% of clutches and overall there was first-mate sperm precedence with a mean P2 of 0.24. Generalized linear modelling revealed that the best predictors of paternity were the time between matings and the time before first mating. Overall, both first and second mates that copulated quickly got greater parentage, which may suggest that postcopulatory events influence patterns of sperm precedence in the garden snail.  相似文献   

4.
Differential sperm usage from consecutive matings, or sperm precedence, is vital in determining male reproductive success and the outcome of sperm competition for many organisms. Sperm precedence also has significant consequences for mating system dynamics, including both male and female adaptations for increasing reproductive success and avoiding the costs of mating. Despite sexual selection being a strong driver of reproductive behaviour and morphology in cephalopods, surprisingly few studies have investigated sperm dynamics in this group. To redress this gap, we experimentally quantified sperm precedence patterns in the dumpling squid, Euprymna tasmanica, controlling for recent male mating history (first vs. second mating), mating position, and mating frequency. We found that the last male to mate gains an advantage in this system, with the second mating male siring up to 75% of offspring at the beginning of the laying period. The proportion of offspring attributable to the second mating male decreases to 54% by the end of the laying period, potentially as a result of changes in the velocity or number of sperm released from spermatangia over time. There is also significant variation among females in patterns of sperm precedence. This variation was not associated with whether it was the male's first or second mating, male mass, the duration of copulation or the number of pumps (sperm removal behaviour) by the second male. If widespread in cephalopods, last male sperm precedence could help to explain the evolution of mate guarding (or long copulation duration) and sperm removal behaviour in this group.  相似文献   

5.
Female remating is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Remating in females is an important component of Drosophila mating systems because it affects sperm usage patterns and sexual selection. Remating is common in females of many species of Drosophila in both natural and laboratory populations. It has been reported in many insect species and also in vertebrates. Female remating is a prerequisite for sperm competition between males, and the consequences of this competition, such as sperm precedence or sperm displacement, have been reported for many species of Drosophila. Female remating is dependent on the amount of sperm stored, the male seminal fluid components, nutrition, the quantity of eggs laid, experimental design and density of flies in laboratory. Remating by a female is an insurance against male sterility and sub-fertility and increases genetic heterogeneity of female offspring. Remating gives greater female productivity in many species of Drosophila. We examined female remating with respect to sperm competition and sexual selection in Drosophila and addressed the possible benefits for females. We also reviewed the role of accessory gland fluid in remating, costs associated with remating, the genetic basis of female remating and some possible mechanisms of sperm competition in the light of last male sperm priority and paternity assurance in Drosophila and other insects. We also suggest future areas of research.  相似文献   

6.
We document a case in which the mating plug of the scorpion Vaejovis punctatus seems correlated with a reduction in female sexual receptivity. We used two morphological and behavioral analyses. The mating plug was dissected and described from both males and females: it bears a set of spines and two enlarged terminations which possibly allow anchoring to the female inside and impede removal. Behavioral observations support this view: after sperm transfer ended, the female tried to remove the plug by rubbing the ventral side of her body using her second and third pair of legs. This pattern was also performed after mate separation. All females seemed unable to displace the plug and rejected male mating attempts. The mating plug suffered a progressive degradation into the female. This degradation was completed 2 or 3 mo prior to parturition, so that the plug did not seem a barrier for the emergence of embryos. Furthermore, females bearing mating plugs in different degradation stages did not accept another mating during the reproductive season, and sexual acceptance was reinitiated only after parturition. The mating plug therefore seems to correlate with a lost in mating activity. The comparison of this structure with that of other scorpion species allows us to hypothesize a sexual coevolutionary scenario in which the effectiveness of the plug to inhibit female remating may lie at the center of such interaction.  相似文献   

7.
Sexual conflict can promote rapid evolution of male and female reproductive traits. Males of many polyandrous butterflies transfer nutrients at mating that enhances female fecundity, but generates sexual conflict over female remating due to sperm competition. Butterflies produce both normal fertilizing sperm and large numbers of non-fertile sperm. In the green-veined white butterfly, Pieris napi, non-fertile sperm fill the females'' sperm storage organ, switching off receptivity and thereby reducing female remating. There is genetic variation in the number of non-fertile sperm stored, which directly relates to the female''s refractory period. There is also genetic variation in males'' sperm production. Here, we show that females'' refractory period and males'' sperm production are genetically correlated using quantitative genetic and selection experiments. Thus selection on male manipulation may increase the frequency of susceptible females to such manipulations as a correlated response and vice versa.  相似文献   

8.
In a seasonal environment, the suitable time window for females to reproduce is restricted by both environmental conditions and the availability of males. In simultaneous hermaphrodites, which are female and male at the same time, selection on a trait that is solely beneficial for one sexual function cannot occur independently. Therefore, it is assumed that the optimal time window for reproduction is a compromise between the two sexual functions in simultaneous hermaphrodites, mediated by environmental conditions. We examined seasonal patterns of reproduction and the resulting paternity in a natural population of the simultaneously hermaphroditic land snail Arianta arbustorum. Adult and premature individuals (snails in a short protandric phase) were collected on four occasions over the entire active season. The snails were allowed to deposit eggs after which we assessed the level of paternity in their hatched offspring. Individuals mated throughout the reproductive season, whereas egg production – the major task of the female function – was restricted to the first half of the season. Snails collected in autumn were allowed to hibernate under laboratory conditions. As a result, we found that premature individuals began to mate late in the reproductive season, but did not start to produce eggs before emerging from hibernation. Our results demonstrate a temporal shift of reproductive activities; the egg production and oviposition occur mainly in the first half of the season, while sperm production and mating occur over the entire season. In subadult and adult snails, sperm obtained from several partners in the second part of the reproductive season are stored during hibernation for the fertilization of eggs in the successive years. These results extend our understanding of the influence of both natural and sexual selection on reproductive strategies in hermaphrodites.  相似文献   

9.
P2, the proportion of offspring sired by the second male to mate, is an indicator of the outcome of postcopulatory sexual selection, which occurs through sperm competition and/or cryptic female choice. We determined the appropriate dose of gamma radiation for sterilization of adult males and, using the sterile male technique, measured P2 in the adzuki bean beetle, Callosobruchus chinensis. Adult males of C. chinensis were almost completely sterilized when irradiated at 80 Gy. Thus, we obtained sterile males through irradiation at this dose. Neither the probability of female first mating nor the probability of female remating was affected by whether females were paired with normal or sterile males. The P2 calculated from the hatching success of eggs laid by females that mated both with normal and sterile males did not differ between reciprocal mating sequences, indicating that the sterilization has no effect on sperm fertilizing ability. The P2 was estimated at 0.25. This study shows that female remating in C. chinensis means the coexistence of sperm from two males and thus the occurrence of postcopulatory sexual selection within the female reproductive tract, resulting in first-male sperm precedence.  相似文献   

10.
Polyandry is widespread and influences patterns of sexual selection, with implications for sexual conflict over mating. Assessing sperm precedence patterns is a first step towards understanding sperm competition within a female and elucidating the roles of male- and female-controlled factors. In this study behavioural field data and genetic data were combined to investigate polyandry in the chokka squid Loligo reynaudii. Microsatellite DNA-based paternity analysis revealed multiple paternity to be the norm, with 79% of broods sired by at least two males. Genetic data also determined that the male who was guarding the female at the moment of sampling was a sire in 81% of the families tested, highlighting mate guarding as a successful male tactic with postcopulatory benefits linked to sperm deposition site giving privileged access to extruded egg strings. As females lay multiple eggs in capsules (egg strings) wherein their position is not altered during maturation it is possible to describe the spatial / temporal sequence of fertilisation / sperm precedence There were four different patterns of fertilisation found among the tested egg strings: 1) unique sire; 2) dominant sire, with one or more rare sires; 3) randomly mixed paternity (two or more sires); and 4) a distinct switch in paternity occurring along the egg string. The latter pattern cannot be explained by a random use of stored sperm, and suggests postcopulatory female sperm choice. Collectively the data indicate multiple levels of male- and female-controlled influences on sperm precedence, and highlights squid as interesting models to study the interplay between sexual and natural selection.  相似文献   

11.
Good JM  Ross CL  Markow TA 《Molecular ecology》2006,15(8):2253-2260
Female remating frequency and sperm allocation patterns can strongly influence levels of sperm competition and reproductive success in natural populations. In the laboratory, Drosophila mojavensis males transfer very few sperm per copulation and females remate often, suggesting multiple paternity should be common in nature. Here, we examine female sperm loads, incidence of multiple paternity, and sperm utilization by genotyping progeny from 20 wild-caught females at four highly polymorphic microsatellite loci. Based on indirect paternity analyses of 814 flies, we found evidence for high levels of multiple paternity coupled with relatively low reproductive output, consistent with the high levels of female remating predicted in this sperm-limited species. Overall, we found little evidence for last -- male sperm precedence though some temporal variation in sperm utilization was observed, consistent with laboratory findings.  相似文献   

12.
Female remating in target pest species can affect the efficacy of control methods such as the Sterile Insect Technique (SIT) but very little is known about the postcopulatory mating behavior of these pests. In this study, we investigated the remating behavior of female Anastrepha serpentina (Diptera: Tephritidae), an oligophagous pest of Sapotaceae. First, we tested how long the sexual refractory period of females lasted after an initial mating. Second, we tested the effect of male and female sterility, female ovipositing opportunities and male density on female propensity to remate. Lastly, we tested if the amount of sperm stored by females was correlated to the likelihood of females to remate. We found that receptivity of mass-reared A. serpentina females had a bimodal response, with up to 16% of mass-reared A. serpentina females remating five days after the initial copulation, decreasing to 2% at 10 and 15 days and increasing to 13% after 20 days. Compared to fertile males, sterile males were less likely to mate and less likely to inhibit females from remating. Copula duration of sterile males was shorter compared to fertile males. Remating females were less likely to mate with a sterile male as a second mate. Sterile females were less likely to mate or remate compared to fertile females. Opportunity to oviposit and male density had no effect on female remating probability. Sperm numbers were not correlated with female likelihood to remate. Information on the post-copulatory behavior of mass-reared A. serpentina will aid fruit fly managers in improving the quality of sterile males. We discuss our results in terms of the differences this species presents in female remating behavior compared to other tephritids.  相似文献   

13.
Abstract  1. Large male seaweed flies (Diptera: Coelopidae) are more likely to mate than smaller males. This is due to sexual conflict over mating, by which females physically resist male attempts to copulate. In some species, large males are simply more efficient at overpowering female resistance.
2. Female reluctance to mate is likely to have evolved due to the costs of mating to females. In many dipterans, males manipulate female behaviour through seminal proteins that have evolved through sperm competition. This behavioural manipulation can be costly to females, for example forcing females to oviposit in sub-optimal conditions and increasing their mortality.
3. Previous work has failed to identify any ubiquitous costs of mating to female coelopids. The work reported here was designed to investigate the effects of exposure to oviposition sites ( Fucus algae) on the reproductive behaviour of four species of coelopid. Algae deposition in nature is stochastic and females mate with multiple males in and around oviposition sites. Spermatogenesis is restricted to the pupal stage and there is last-male sperm precedence. It was predicted that males would avoid wasting sperm and would be more willing to mate, and to remain paired with females for longer, when exposed to oviposition material compared with control males. Females were predicted to incur longevity costs of mating if mating increased their rate of oviposition, especially in the presence of algae.
4. The behaviour of males of all four species concurred with the predictions; however mating did not affect female receptivity, oviposition behaviour, or longevity. Exposure to algae induced oviposition and increased female mortality in all species independently of mating and egg production. The evolutionary ecology of potential costs of mating to female coelopids are discussed in the light of these findings.  相似文献   

14.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

15.
Scramble competition polygyny is expected when females and/or resources are widely dispersed and not easily monopolized by males, or when there is an abundance of mates during an extremely restricted reproductive period. Additional factors such as first male sperm precedence or low female re-mating rate might further explain the propensity of males to engage in scramble competition. The sexually cannibalistic praying mantid Pseudomantis albofimbriata exhibits a polygynous mating system, where females exist in low-density populations and male competition manifests as the race to find females rather than as direct physical fighting. Here, we aim to determine whether there is a paternity advantage for the first-male to mate and/or a low frequency of female re-mating. First, we determined sperm precedence patterns in P. albofimbriata using the sterile male technique. Second, we tested the likelihood of female re-mating in P. albofimbriata by comparing the close-range approach behaviour and frequency of successful mating attempts for males when paired with virgin as opposed to recently mated females, and by comparing the frequency of long-distance male attraction between virgin and mated females. We found no paternity advantage for the first male to mate, rather a second male advantage. Although mated females were not rejected by males when approached from close-range, they were chemically unattractive to males searching from a distance. Since initial mate attraction in many praying mantids, including P. albofimbriata, is mediated via long-distance chemical communication, we believe the latter result is more ecologically relevant and therefore more important. These results suggest that the relatively low frequency of female re-mating observed in P. albofimbriata may be an additional factor driving scramble competition in this system.  相似文献   

16.
When females mate with more than one male during their reproductive cycle, males may increase their share of paternity by copulating repeatedly with the same female. Accordingly, males should mate repeatedly with the same female more frequently when the risk of sperm competition is greater. We examined this idea experimentally in the orb-web spiderNephila edulis , which is characterized by both extreme sexual size dimorphism and extreme male size variation. Comparison of the mating behaviour of solitary and pairs of males on the webs of virgin and mated females revealed that males adjust the frequency and duration of copulation according to the mating history of the female and the presence of rival males. Males copulated more frequently and for longer with virgin than mated females. The copulation behaviour of males in the presence of rivals depended upon their relative size. Typically, larger males prevented smaller rivals from gaining access to the female and therefore were able to copulate more frequently. Smaller males copulated less frequently, but for longer periods, which may have increased their share of paternity. The size of male N. edulis can vary by an order of magnitude, and our results suggest that this variation may be maintained by the alternative size-dependent strategies of preventing or winning sperm competition. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

17.
Sexual selection, through female choice and/or male–male competition, has influenced the nature and direction of sexual size dimorphism in numerous species. However, few studies have examined the influence of sperm competition on size dimorphism. The orb‐web spider Nephila edulis has a polygamous mating system and extreme size dimorphism. Additionally, the frequency distribution of male body size is extremely skewed with most males being small and few large. The duration of copulation, male size and sexual cannibalism have been identified as the significant factors determining patterns of sperm precedence in spiders. In double mating trials, females were assigned to three treatments: either they mated once with both males or the first or the second male was allowed to mate twice. Paternity was strongly associated with the duration of copulation, independent of mating order. Males that were allowed to mate twice not only doubled the duration of copulation but also their paternity. Small males had a clear mating advantage, they copulated longer than large males and fertilized more eggs. Males of different sizes used different tactics to mate. Large males were more likely to mate through a hole they cut into the web, whereas small males approached the female directly. Furthermore, small males usually mated at their first attempt but large males required several attempts before mating took place. There was no obvious female reaction towards males of different sizes.  相似文献   

18.
Old‐male mating advantage has been convincingly demonstrated in Bicyclus anynana butterflies. This intriguing pattern may be explained by two alternative hypotheses: (i) an increased aggressiveness and persistence of older males during courtship, being caused by the older males' low residual reproductive value; and (ii) an active preference of females towards older males what reflects a good genes hypothesis. Against this background, we here investigate postcopulatory sexual selection by double‐mating Bicyclus anynana females to older and younger males, thus allowing for sperm competition and cryptic mate choice, and by genotyping the resulting offspring. Virgin females were mated with a younger virgin (2–3 days old) and afterwards an older virgin male (12–13 days old) or vice versa. Older males had a higher paternity success than younger ones, but only when being the second (=last) mating partner, while paternity success was equal among older and younger males when older males were the first mating partner. Older males produced larger spermatophores with much higher numbers of fertile sperm than younger males. Thus, we found no evidence for cryptic female mate choice. Rather, the findings reported here seem to result from a combination of last‐male precedence and the number of sperm transferred upon mating, both increasing paternity success.  相似文献   

19.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

20.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号