首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ant colonies emigrate frequently from one nest site to another. Emigrations, however, are dangerous, particularly for colonieswith a single queen. The queen is a "vital organ" of the colony,and emigrations expose her to grave peril. The optimal strategyfor a monogynous ant colony, therefore, should be that thequeen moves during the middle of the emigration so that sheis transferred swiftly from the protection of half of the colony in the old nest to the protection of the other half colony inthe new nest. In the ant Leptothorax albipennis, the queenis carried during colony emigration. We tested the null hypothesisthat the queen has a random position in the sequence of transportevents during an emigration. The result of 32 emigrations demonstrated,for the first time, that the transport serial number of thequeen [calculated relative to the total number of all transportevents (i.e., of brood and adult ants together), brood transportevents, or adult ant transport events] is not random and furthermoreoccurs in the middle of the transport sequence. This resultrepresents a colony strategy because we found that the relativetransport serial number of the queen was related neither to emigration distance nor to colony size. Transporting queensin the middle of emigrations is a strategy probably favoredby selection and is an aspect of colonies behaving as group-leveladaptive units.  相似文献   

2.
The ecological success of social insects is often attributed to an increase in efficiency achieved through division of labor between workers in a colony. Much research has therefore focused on the mechanism by which a division of labor is implemented, i.e., on how tasks are allocated to workers. However, the important assumption that specialists are indeed more efficient at their work than generalist individuals—the “Jack-of-all-trades is master of none” hypothesis—has rarely been tested. Here, I quantify worker efficiency, measured as work completed per time, in four different tasks in the ant Temnothorax albipennis: honey and protein foraging, collection of nest-building material, and brood transports in a colony emigration. I show that individual efficiency is not predicted by how specialized workers were on the respective task. Worker efficiency is also not consistently predicted by that worker''s overall activity or delay to begin the task. Even when only the worker''s rank relative to nestmates in the same colony was used, specialization did not predict efficiency in three out of the four tasks, and more specialized workers actually performed worse than others in the fourth task (collection of sand grains). I also show that the above relationships, as well as median individual efficiency, do not change with colony size. My results demonstrate that in an ant species without morphologically differentiated worker castes, workers may nevertheless differ in their ability to perform different tasks. Surprisingly, this variation is not utilized by the colony—worker allocation to tasks is unrelated to their ability to perform them. What, then, are the adaptive benefits of behavioral specialization, and why do workers choose tasks without regard for whether they can perform them well? We are still far from an understanding of the adaptive benefits of division of labor in social insects.  相似文献   

3.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

4.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

5.
Flexibility in task performance is essential for a robust system of division of labour. We investigated what factors determine which social insect workers respond to colony-level changes in task demand. We used radio-frequency identification technology to compare the roles of corpulence, age, spatial location and previous activity (intra-nest/extra-nest) in determining whether worker ants (Temnothorax albipennis) respond to an increase in demand for foraging or brood care. The less corpulent ants took on the extra foraging, irrespective of their age, previous activity or location in the nest, supporting a physiological threshold model. We found no relationship between ants that tended the extra brood and corpulence, age, spatial location or previous activity, but ants that transported the extra brood to the main brood pile were less corpulent and had high previous intra-nest activity. This supports spatial task-encounter and physiological threshold models for brood transport. Our data suggest a flexible task-allocation system allowing the colony to respond rapidly to changing needs, using a simple task-encounter system for generalized tasks, combined with physiologically based response thresholds for more specialized tasks. This could provide a social insect colony with a robust division of labour, flexibly allocating the workforce in response to current needs.  相似文献   

6.
Abstract. Bumble bee workers (Bombus bifarius, Hymenoptera: Apidae) exhibit aggression toward one another after the colony begins producing female reproductive offspring (the competition phase). Workers in competition phase colonies must continue to perform in‐nest tasks, such as nest thermoregulation, and to forage for food, to rear the reproductives to maturity. Therefore, competition phase workers are faced with potentially conflicting pressures to work for their colonies, or to compete for direct reproduction. The effects of reproductive competition on worker task performance were quantified by measuring relationships of worker body size, reproductive physiology, and aggression with their rates of task performance. If worker division of labour was strongly affected by competition, it was predicted that fecund workers would avoid performing nest maintenance and foraging tasks, focusing instead on reproductive behaviour. Furthermore, it was predicted that fecund workers would dominate their nest mates, and that subordinate workers would perform nonreproductive tasks at higher rates. Worker aggression was associated closely with direct reproductive competition. Both aggression and brood interaction rates were related positively with ooctye development. Furthermore, foraging was associated negatively with ovarian development. However, in‐nest and foraging task performance rates were not associated with social aggression. The results support a partial role for reproductive competition in worker polyethism. Although worker aggression did not directly affect polyethism, reproductively competent workers avoided foraging tasks that would remove them from egg‐laying opportunities. Reproductively competent workers did perform in‐nest tasks, suggesting that these tasks entail little cost in terms of reproductive competition.  相似文献   

7.
Organisms should invest more in gathering information when the pay-off from finding a profitable resource is likely to be greater. Here, we ask whether animal societies put more effort in scouting for a new nest when their current one is of low quality. We measured the scouting behaviour of Temnothorax albipennis ant colonies when they inhabit nest-sites with different combinations of desirable attributes. We show that the average probability of an ant scouting decreases significantly with an increase in the quality of the nest in which the colony currently resides. This means that the greater the potential gain from finding a new nest, the more effort a colony puts into gathering information regarding new nest-sites. Our results show, for the first time to our knowledge, the ability of animal societies to respond collectively to the quality of a resource they currently have at their disposal (e.g. current nest-site) and regulate appropriately their information gathering efforts for finding an alternative (e.g. a potentially better nest-site).  相似文献   

8.
In social insects, groups of workers perform various tasks such as brood care and foraging. Transitions in workers from one task to another are important in the organization and ecological success of colonies. Regulation of genetic pathways can lead to plasticity in social insect task behaviour. The colony organization of advanced eusocial insects evolved independently in ants, bees, and wasps and it is not known whether the genetic mechanisms that influence behavioural plasticity are conserved across species. Here we show that a gene associated with foraging behaviour is conserved across social insect species, but the expression patterns of this gene are not. We cloned the red harvester ant (Pogonomyrmex barbatus) ortholog (Pbfor) to foraging, one of few genes implicated in social organization, and found that foraging behaviour in harvester ants is associated with the expression of this gene; young (callow) worker brains have significantly higher levels of Pbfor mRNA than foragers. Levels of Pbfor mRNA in other worker task groups vary among harvester ant colonies. However, foragers always have the lowest expression levels compared to other task groups. The association between foraging behaviour and the foraging gene is conserved across social insects but ants and bees have an inverse relationship between foraging expression and behaviour.  相似文献   

9.
In many social insect species, colonies frequently emigrate to a new nest. This requires the coordination of many individuals, and it puts the queen at risks of being lost or predated. We experimentally studied colony emigration in the ant Aphaenogaster senilis, who emigrates frequently and obligatorily reproduces by colony fission. As in other species, colony emigration was characterised by a synchronised relocation of workers. Foragers found the new nest site and triggered the relocation of the “inside” workers, which built up following a sigmoid curve. Unlike in Temnothorax, where workers are transported to the new nest, most individuals relocated by walking. The brood was transported around the middle of colony relocation, mostly by “inside” workers because they represent most of the workforce. The queen walked to the new nest at the middle of colony relocation, when the flow of ants to the new nest was maximal. Overall, this temporal dynamic of colony emigration is similar to that observed in other species. However, we argue that species-specific traits, such as whether workers are transported to the new nest or relocate by themselves, may affect parts of the process of colony emigration.  相似文献   

10.
Social insects live in colonies consisting of many workers, where worker interactions play an important role in regulating colony activities. Workers interact within the social space of the nest; therefore, constraints on nest space may alter worker behaviour and affect colony activities and energetics. Here we show in the ant Temnothorax rugatulus that changes in nest space have a significant effect on colony energetics. Colonies with restricted nest space showed a 14.2 per cent increase in metabolic rate when compared with the same colonies in large uncrowded nests. Our study highlights the importance of social space and shows that constraints on social space can significantly affect colony behaviour and energy use in ants. We discuss the implications of our findings regarding social insects in general.  相似文献   

11.
Previous work with the antCamponotus floridanus demonstrated that perception of competition can be clearly differentiated from effects of mortality and decreased resources. That is, brood biomass in ant colonies decreases as a consequence of a behavioral decision(s) rather than because of limited food availability or reduced numbers of brood tenders. The experiments presented here extend that work. Under experimental conditions, colony growth inC. floridanus is modified by distance between brood and unrelated conspecifics and by worker age distribution. When nonnestmates are encountered at the nest versus at a separate foraging site, less brood is maintained by a colony. Although colonies with older workers maintain a brood biomass similar to that of colonies with younger workers, that biomass is concentrated in fewer, larger, more rapidly maturing larvae. These effects seem to be due entirely to worker control.  相似文献   

12.
Colony size can affect individual- and colony-level behavioral and physiological traits in social insects. Changes in behavior and physiology in response to colony growth and development can affect productivity and fitness. Here, we used respirometry to study the relationship between colony size and colony energy consumption in Temnothorax rugatulus ants. In addition, we examined the relationship between colony size and worker productivity measured as per capita brood production. We found that colony metabolic rate scales with colony size to the 0.78 power and the number of brood scales with the number of workers to the 0.49 power. These regression analyses reveal that larger ant colonies use proportionally less energy and produce fewer brood per worker. Our findings provide new information on the relationships between colony size and energetic efficiency and productivity in a model ant genus. We discuss the potential mechanisms giving rise to allometric scaling of metabolic rate in ant colonies and the influence of colony size on energy consumption and productivity in general.  相似文献   

13.
Summary The most dangerous time for an ant colony is during the founding stage when the small colony is vulnerable to predation and competition. Colonies can grow more rapidly when multiple queens cooperate in raising the first worker brood (pleometrosis) or by raiding other incipient colonies for their brood. This brood raiding has been proposed to be the primary force selecting for pleometrosis, i.e. multiple-queen colonies may have a considerable advantage in destroying neighbours by aggressively stealing their brood. An alternative hypothesis is that incipient nests are part of a larger, interconnected population structure and that brood raiding reflects cooperative pleometrosis with subdivided colonies. A simple mathematical model supports the second hypothesis: workers of incipient colonies are especially favoured to peaceably abandon their nest and join with other colonies if the queens are related or queens from raided colonies can infiltrate the raiding colony. The latter condition is often met in ant species that brood raid and particularly exemplified in fire ants (Solenopsis invicta), where brood raiding involves little mortal combat and combines with pleometrosis to rapidly increase colony size. It is proposed that the term nest consolidation should replace brood raiding to more accurately reflect the relatively non-aggressive and potentially apparently cooperative nature of interactions between incipient ant colonies.  相似文献   

14.
Among social insects, colony‐level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony‐level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony‐level behavioural variation.  相似文献   

15.
In social insects, colonies commonly show temporal polyethism in worker behavior, such that a worker follows a predictable pattern of changes between tasks as it ages. This pattern usually leads from workers first doing a safe task like brood care, to ending their lives doing the most dangerous tasks like foraging. Two mechanisms could potentially underlie this pattern: (1) age‐based task allocation, where the aging process itself predisposes workers to switch to more dangerous tasks; and (2) foraging for work, where ants switch to tasks that need doing from tasks which have too many associated workers. We tested the relative influence of these mechanisms by establishing nests of Camponotus floridanus with predetermined combinations of workers of known age and previous task specialization. The results supported both mechanisms. Nests composed of entirely brood‐tending workers had the oldest workers preferentially switching to foraging. However, in nests initially composed entirely of foragers, the final distribution of tenders and foragers was not different from random task‐switching and therefore supportive of foraging for work. Thus, it appears that in C. floridanus there is directionality to the mechanisms of task allocation. Switching to more dangerous tasks is age‐influenced, but switching to less dangerous tasks is age‐independent. The results also suggest that older workers are more flexible in their task choice behavior. Younger workers are more biased towards choosing within‐nest tasks. Finally, there are effects of previous experience that tend to keep ants in familiar tasks. Task allocation based on several mechanisms may balance between: (1) concentrating the most worn workers into the most dangerous tasks; (2) increasing task performance levels; and (3) maintaining behavioral flexibility to respond to demographic perturbations. The degree to which behavior is flexible may correlate to the frequency of such perturbations in a species.  相似文献   

16.
We briefly review the literature on the division of labour in ant colonies with monomorphic worker populations, and show that there are anomalies in current theories and in the interpretation of existing data sets. Most ant colonies are likely to be in unstable situations and therefore we doubt if an age-based division of labour can be sufficiently flexible. We present data for a type of small ant colony in a highly seasonal environment, concentrating on individually marked older workers. We show that contrary to expectation such workers undertake a wide variety of tasks and can even retain their ability to reproduce, even whilst younger workers are actively foraging. Our analysis shows that old workers occupy four distinct spatial stations within the nest and that these are related to the tasks they perform. We suggest that correlations between age and task in many ant colonies might simply be based on ants foraging for work, i.e. actively seeking tasks to perform and remaining faithful to these as long as they are profitably employed. For this reason, employed older workers effectively displace unemployed younger workers into other tasks. In a companion paper, Tofts 1993,Bull. math. Biol. develops an algorithm that shows how foraging for work can be an efficient and flexible mechanism for the division of labour in social insects. The algorithm creates a correlation between age and task purely as a by-product of itsmodus operandi.  相似文献   

17.

Background

Successful collective decision-making depends on groups of animals being able to make accurate choices while maintaining group cohesion. However, increasing accuracy and/or cohesion usually decreases decision speed and vice-versa. Such trade-offs are widespread in animal decision-making and result in various decision-making strategies that emphasize either speed or accuracy, depending on the context. Speed-accuracy trade-offs have been the object of many theoretical investigations, but these studies did not consider the possible effects of previous experience and/or knowledge of individuals on such trade-offs. In this study, we investigated how previous knowledge of their environment may affect emigration speed, nest choice and colony cohesion in emigrations of the house-hunting ant Temnothorax albipennis, a collective decision-making process subject to a classical speed-accuracy trade-off.

Methodology/Principal Findings

Colonies allowed to explore a high quality nest site for one week before they were forced to emigrate found that nest and accepted it faster than emigrating naïve colonies. This resulted in increased speed in single choice emigrations and higher colony cohesion in binary choice emigrations. Additionally, colonies allowed to explore both high and low quality nest sites for one week prior to emigration remained more cohesive, made more accurate decisions and emigrated faster than emigrating naïve colonies.

Conclusions/Significance

These results show that colonies gather and store information about available nest sites while their nest is still intact, and later retrieve and use this information when they need to emigrate. This improves colony performance. Early gathering of information for later use is therefore an effective strategy allowing T. albipennis colonies to improve simultaneously all aspects of the decision-making process – i.e. speed, accuracy and cohesion – and partly circumvent the speed-accuracy trade-off classically observed during emigrations. These findings should be taken into account in future studies on speed-accuracy trade-offs.  相似文献   

18.
Division of labour improves the efficiency of animal societies. Efficiency is further improved in many social insects where morphologically specialized adults perform different tasks. In ants, the wingless worker caste performs non‐reproductive activities and sometimes exhibits multiple phenotypes when requirements between brood care and expert foraging diverge. Mystrium rogeri from Madagascar is a specialist predator on large centipedes, and the worker caste is highly polymorphic in size. In contrast, M. oberthueri has only large workers. The replacement of the queen caste by wingless intermorphs much smaller than workers explains this evolutionary shift in M. oberthueri. Many intermorphs occur in each colony but only a few mate and reproduce. In order to determine their contribution to non‐reproductive tasks, we performed multivariate analyses on behavioural data recorded by scan sampling from four M. oberthueri colonies in the laboratory. In unmanipulated colonies, workers and intermorphs exhibited two distinct behavioural profiles. Workers focused on guarding and foraging, while intermorphs performed brood care and nest cleaning, regardless of whether they reproduced or not. This pattern of polyethism where the reproductive caste completely takes charge of some non‐reproductive tasks is novel, as confirmed by our observations of one colony of M. rogeri where non‐reproductive tasks were restricted to workers, as in most ants. When isolated from one another, M. oberthueri workers and intermorphs developed less distinctive behavioural patterns. Some workers cared for the brood, but the intermorphs could not hunt because of their small mandibles. Such plasticity in polyethism at the colony level confers the ability to react to unexpected changes, including variable proportions of workers and intermorphs.  相似文献   

19.
The genetic diversity in social insect colonies that is generated by multiple mating or multiple queens has been hypothesized to promote worker task specialization and therefore facilitate division of labour. However, few studies have actually examined the mechanisms by which genotype may influence individual worker behaviour. In this study, we dissect possible genetic effects on worker task performance in the desert leaf-cutter ant. We hypothesize that genotype could affect worker behaviour via (1) the rate of age-related task switching (age polyethism schedule), (2) individual task preference, and/or (3) task performance rates. To discriminate among these possible mechanisms, we generated composite colonies of workers from different genetic sources and followed the behaviour of individually marked workers over their lifetimes. We found significant differences among matrilines (offspring of different queens) in overall task performance. In particular, we found a negative covariance in likelihood of foraging versus tending fungus inside the nest. Workers of different matrilines also varied in the age of transition from inside the nest to foraging, but did not vary in task performance rates. Our results suggest that division of labour in this system is affected by genetic influences on individual task preference and age-related task choice, but not on variation in activity level.  相似文献   

20.
《Animal behaviour》1998,55(2):417-426
Division of labour among workers in insect societies often includes two major components: age-related changes in behaviour (age polyethism) and specialization in task performance. The aim of this study was to test whether similarity in inside-nest task performance and in rate of age polyethism correspond to genetic similarity among nestmates in the polygynous eusocial waspPolybia aequatorialis.Behavioural data were collected on marked, known-age workers from three source colonies introduced into two observation colonies in the field. Genetic similarity among workers was assessed by quantifying sharing of random amplified polymorphic DNA (RAPD) marker alleles. Workers were categorized by whether they engaged in nest cleaning as an indicator of individual differences in inside-nest task performance. Within source colonies, workers that performed nest-cleaning tasks were more genetically similar to each other than they were to workers not performing these tasks. Workers also differed in their rates of passage through the age-related task sequence, but no association was found between sharing of RAPD marker alleles and rate of age polyethism. These results accord with earlier studies demonstrating flexibility in age polyethism in swarm-founding wasps, and with findings that worker genotypic variability corresponds to specialization in task performance inP. aequatorialis. Polybiaspp. workers rarely switch among tasks, even in response to changes in colony conditions, and workers’ genotypes may constrain flexibility in task performance at the individual level. Conversely, colonies may accrue benefits from having genotypically diverse worker forces, which could favour the maintenance of polygyny in swarm-founding wasps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号