首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interindividual variability in response to environmental stimuliis believed to have a major impact on collective behaviors insocial insects. The present study presents a detailed investigationof the variability in individual fanning behavior underlyingthe collective control of nest climate in bumblebee (Bombusterrestris) colonies. Four colonies were repeatedly exposedto increasing temperature and CO2 levels. The response thresholdof each worker (defined as the mean stimulus intensity at whicha worker responded by fanning) was determined. Temperature responsethresholds of 118 workers and CO2 response thresholds of 88workers were analyzed. Workers differed in their response thresholds.Some consistently responded to low stimulus intensities, othersconsistently responded to high stimulus intensities. No consistentcorrelation between temperature and CO2 thresholds was foundwithin individuals. Response thresholds of fanning bees decreasedover successive trials, providing empirical support for theidea of specialization through individual threshold reinforcement.In addition to variability in individual response thresholds,workers of a colony differed in two other parameters of responsiveness:response probability (the probability of responding to a stimulusonce it exceeded an individual's response threshold) and responseduration (the persistency with which fanning was performed oncean individual responded). The results of the present study suggestthat response threshold, response probability and response durationare important independent parameters of individual responsivenessin the collective control of nest climate in bumblebee colonies.  相似文献   

2.
Carbon dioxide releases fanning behaviour in the honey-bee. The response is proportional to the atmospheric CO2 level within the nest and regulates the atmospheric CO2 concentration between 0·10 and 4·25 per cent in small colonies. Large colonies control atmospheric CO2 more precisely than small colonies.  相似文献   

3.
Thermoregulation, that is, the active control of temperature, is key to ensure proper brood development in both wild and captive bumblebee nests. In this study, thermoregulation dynamics were assessed relative to colony age and ambient temperature using commercially reared Bombus terrestris L. (Hymenoptera, Apidae, Bombus) colonies. We observed a positive relationship between brood and nest temperatures in response to ambient temperature. Thermoregulation investment (by either brooding or fanning) was lowest at brood surface temperatures between 33 and 34 °C and ambient temperatures between 28 and 32 °C. Brood temperature was less stable and thermoregulation investment higher in younger colonies, especially at lower ambient temperatures. Furthermore, queens initiated colonies sooner and colonies developed faster when kept at an ambient temperature of 29 °C as compared to 24 °C. Our results suggest that ambient temperatures are ideally kept between 29 and 31 °C.  相似文献   

4.
Regulation of nest temperature is important to the fitness of eusocial insect colonies. To maintain appropriate conditions for the developing brood, workers must exhibit thermoregulatory responses to ambient temperature. Because nest-mate workers differ in task performance, thermoregulatory behavior provides an opportunity to test threshold of response models for the regulation of division of labor. We found that worker bumble bees ( Bombus bifarius nearcticus ) responded to changes in ambient temperature by altering their rates of performing two tasks – wing fanning and brood cell incubation. At the colony level, the rate of incubating decreased, and the rate of fanning increased, with increasing temperature. Changes in the number of workers performing these tasks were more important to the colony response than changes in workers' task performance rates. At the individual level, workers' lifetime rates of incubation and fanning were positively correlated, and most individuals did not specialize exclusively on either of these temperature-sensitive tasks. However, workers differed in the maximum temperature at which they incubated and in the minimum temperature at which they fanned. More individuals fanned at high and incubated at low temperatures. Most of the workers that began incubating at higher temperatures continued performing this task at lower temperatures, when additional nest-mates became active. The converse was true for fanning behavior. These data are consistent with a threshold of response model for thermoregulatory behavior of B. bifarius workers.  相似文献   

5.
Simulation studies of the task threshold model for task allocation in social insect colonies suggest that nest temperature homeostasis is enhanced if workers have slightly different thresholds for engaging in tasks related to nest thermoregulation. Genetic variance in task thresholds is one way a distribution of task thresholds can be generated. Apis mellifera colonies with large genetic diversity are able to maintain more stable brood nest temperatures than colonies that are genetically uniform. If this phenomenon is generalizable to other species, we would predict that patrilines should vary in the threshold in which they engage in thermoregulatory tasks. We exposed A. florea colonies to different temperatures experimentally, and retrieved fanning workers at these different temperatures. In many cases we found statistically significant differences in the proportion of fanning workers of different patrilines at different experimental temperatures. This suggests that genetically different workers have different thresholds for performing the thermoregulatory task of fanning. We suggest, therefore, that genetically based variance in task threshold is a widespread phenomenon in the genus Apis.  相似文献   

6.
Here we explored the potential for host shift from honeybee, Apis mellifera, colonies to bumblebee, Bombus impatiens, colonies by the small hive beetle, a nest parasite/scavenger native to sub-Saharan Africa. We investigated small hive beetle host choice, bumblebee colony defence as well as individual defensive behaviour of honeybee and bumblebee workers. Our findings show that in its new range in North America, bumblebees are potential alternate hosts for the small hive beetle. We found that small hive beetles do invade bumblebee colonies and readily oviposit there. Honeybee colonies are not preferred over bumblebee colonies. But even though bumblebees lack a co-evolutionary history with the small hive beetle, they are able to defend their colonies against this nest intruder by removal of beetle eggs and larvae and stinging of the latter. Hence, the observed behavioural mechanisms must be part of a generalistic defence system suitable for defence against multiple attackers. Nevertheless, there are quantitative (worker force) and qualitative differences (hygienic behaviour) between A. mellifera and B. impatiens. Received 16 July 2007; revised 16 January 2008; accepted 17 January 2008.  相似文献   

7.
1. Leaf‐cutting ants remove copious amounts of colony waste, a potential pathogen source for workers and reared symbiotic fungus, to above‐ground heaps or deep underground chambers. However, the dumpsite may also contain information about plants initially harvested and disposed of because of unsuitability for the fungus. 2. The underground environment presents climatic gradients across the soil profile and it is an open question whether leaf‐cutting ants use microclimatic cues to choose suitable sites for waste disposal, as displayed for other in‐nest tasks. 3. Climatic preferences in leaf‐cutting ants were investigated for the deposition of colony waste. In the laboratory, deposition of waste particles by workers of Atta laevigata was quantified by offering them, in different experiments, a binary choice of temperatures (range, 15–30 °C), levels of air humidity (range 10–98%), and CO2 concentrations (range, atmospheric values to 10%). 4. Leaf‐cutting ants used temperature and air humidity, but not CO2 levels, as cues for the deposition of their waste. They consistently preferred a dry (≤ 33% air humidity) environment. Less consistent, temperature preferences varied depending on colony (15–25 °C for one colony and 25–30 °C for the other). Although workers showed clear preferences for high levels of CO2 for themselves, they were CO2‐indifferent for waste deposition. 5. It is argued that the observed climatic preferences for underground waste disposal might aid nest hygiene by providing unsuitable dry conditions for pathogen growth, with thermal preferences that do not hinder worker activities for further waste management and inspection of discarded plants.  相似文献   

8.

Background

Cooperation and conflict in social insects are closely linked to the genetic structure of the colony. Kin selection theory predicts conflict over the production of males between the workers and the queen and between the workers themselves, depending on intra-colonial relatedness but also on other factors like colony efficiency, sex ratios, cost of worker reproduction and worker dominance behaviour. In most bumblebee (Bombus) species the queen wins this conflict and often dominates male production. However, most studies in bumblebees have been conducted with only a few selected, mostly single mated species from temperate climate regions. Here we study the genetic colony composition of the facultative polyandrous neotropical bumblebee Bombus wilmattae, to assess the outcome of the queen-worker conflict over male production and to detect potential worker policing.

Results

A total of 120 males from five colonies were genotyped with up to nine microsatellite markers to infer their parentage. Four of the five colonies were queen right at point of time of male sampling, while one had an uncertain queen status. The workers clearly dominated production of males with an average of 84.9% +/- 14.3% of males being worker sons. In the two doubly mated colonies 62.5% and 96.7% of the male offspring originated from workers and both patrilines participated in male production. Inferring the mother genotypes from the male offspring, between four to eight workers participated in the production of males.

Conclusions

In this study we show that the workers clearly win the queen-worker conflict over male production in B. wilmattae, which sets them apart from the temperate bumblebee species studied so far. Workers clearly dominated male production in the singly as well the doubly mated colonies, with up to eight workers producing male offspring in a single colony. Moreover no monopolization of reproduction by single workers occurred.  相似文献   

9.
Summary We studied the effects of intrinsic colony characteristics and an imposed contingency on the life span and behavior of foragers in the swarm-founding social waspPolybia occidentalis. Data were collected on marked, known-age workers introduced into four observation colonies.To test the hypothesis that colony demographic features affect worker life span, we examined the relationships of colony age and size with worker life span using survivorship analysis. Colony age and size had positive relationships with life span; marked workers from two larger, older colonies had longer life spans (¯X = 24.7 days) than those from two smaller, younger colonies (¯X = 20.1 days).We quantified the effects of experimentally imposed nest damage on forager behavior, to determine which of three predicted behavioral responses by foragers to this contingency (increased probability of foraging for building material, increased rate of foraging, or decrease in age of onset of foraging) would be employed. Increasing the colony level of need for materials used in nest construction (wood pulp and water) by damaging the nests of two colonies did not cause an increase in either the proportion of marked workers that gathered nest materials or in foraging rates of marked individuals, when compared with introduced workers in two simultaneously observed control colonies. Instead, nest damage caused a decrease in the age at which marked workers first foraged for pulp and water. The response to an increase in the need for building materials was an acceleration of behavioral development in some workers.  相似文献   

10.
Apis cerana and Apis mellifera normally display different strategies in cooling hive temperature, raising the question whether they would coordinate their efforts in to achieve stable thermoregulation in mixed colonies. The results show that the normal temperatures in the brood area in mixed colonies are more similar to those of pure A. cerana colonies than pure A. mellifera colonies. Under heat stress, A. cerana workers are more sensitive, and initiate fanning earlier than A. mellifera workers. In mixed colonies, the former become the main force for thermoregulation. When worker bees of both species were fanning together at the entrance, their own species-specific postures were adopted, but due to a significantly smaller number of A. mellifera workers engaged in fanning, the cooling efficiency of mixed colonies were closest to that of pure A. cerana colonies.  相似文献   

11.
Warm temperatures decrease insect developmental time and body size. Social life could buffer external environmental variations, especially in large social groups, either through behavioral regulation and compensation or through specific nest architecture. Mean worker size and distribution of worker sizes within colonies are important parameters affecting colony productivity as worker size is linked to division of labor in insect societies. In this paper, we investigate the effect of stressful warm temperatures and the role of social environment (colony size and size of nestmate workers) on the mean size and size variation of laboratory-born workers in the small European ant Temnothorax nylanderi. To do so, we reared field-collected colonies under medium or warm temperature treatments after having marked the field-born workers and removed the brood except for 30 first instar larvae. Warm temperature resulted in the production of fewer workers and a higher adult mortality, confirming that this regime was stressful for the ants. T. nylanderi ants followed the temperature size rule observed in insects, with a decreased developmental time and mean size under warm condition. Social environment appeared to play an important role as we observed that (i) larger colonies buffered the effect of temperature better than smaller ones (ii) colonies with larger workers produced larger workers whatever the rearing temperature and (iii) the coefficient of variation of worker size was similar in the field and under medium laboratory temperature. This suggests that worker size variation is not primarily due to seasonal environmental fluctuations in the field. Finally, we observed a higher coefficient of variation of worker size under warm temperature. We propose that this results from a disruption of social regulation, i.e. the control of nestmate workers over developing larvae and adult worker size, under stressful conditions.  相似文献   

12.
Nest ventilation should be particularly relevant for the huge colonies of leaf-cutting ants, genus Atta. Considerable amounts of O2 are consumed and CO2 produced by both the fungus gardens and the ants inside nest chambers, which are located at deep soil layers characterized by high CO2 and low O2 concentrations. In this work, passive nest ventilation was investigated in field Atta capiguara and Atta laevigata nests, first, by evaluating air movements through the nest using propane as tracer gas as well as the CO2 and O2 concentrations of the circulating air, and second, by exposing the internal nest morphology with the use of cement casts and excavations. Results showed that even though outflow of CO2-rich air and inflow of O2-rich air occurred at high-placed and low-placed openings, respectively, supporting a wind-induced interpretation of air movements through the nest, circulating air was never detected inside fungus chambers. The CO2 and O2 levels inside the fungus chambers increased and decreased with increasing soil depth, respectively, and were in the range observed in the soil phase. Based on the underground nest architecture, it is concluded that although the external shape of the nest induces underground air circulation, the inflowing air is unable to directly reach the fungus chambers. It is argued that colony respiration completely depends on diffusive flows between the chamber air and the adjacent nest and soil atmospheres. Circulating air, although not directly renewing the air inside the nest chambers, may contribute to colony respiration by increasing the capacity of the nest and soil airs to act as an O2-source and a CO2-sink, because of the decrease in the CO2 and the increase in the O2 levels in the underground air phase. Possible adaptations of both ants and fungus to the high CO2 and low O2 concentrations usually found in soils are discussed.  相似文献   

13.
We used x-ray computed tomography to study the elaboration of nest structures in small sand-filled nest boxes by Argentine ant (Linepithema humile) colonies composed of 10, 100, and 1000 workers. The pattern of nest growth was consistent with a process of density-dependent stimulation of excavation, which subsided as nests grew and the density of digging stimuli declined. Thus, nest excavation would be auto-regulating, and final nest size should be adjusted to colony size. We found that excavation rates and final nest sizes increased with colony size, but were not tenfold greater in 1000-worker colonies than in 100-worker colonies. In the largest colonies, the internal surface area scaled allometrically with volume, so that more surface was obtained relative to volume excavated as the nest grew. Although the gross features of Argentine ant nests, such as total size, seem explicable by a simple, self-organized regulatory process, other features of the nest architecture will require further investigation. Received 3 March 2005; revised 26 April 2005; accepted 3 May 2005.  相似文献   

14.
Ants are social, and their metabolism should be measured on at least two levels: (i) the individual workers and brood of which the colony is composed and (ii) the colony in its entirety. Whole colony respiration, tempo (size‐free running speed in body lengths per second) and whole colony activity were simultaneously measured for 15 species of ants in four subfamilies, and these data are related to average worker and whole‐colony weight, activity, percentage brood and percentage fat. Across all 15 species, whole colony respiration rate (μL CO2 h?1) is linearly related to whole colony live weight (log–log slope = 1.0). Colonies composed of large workers respire less than colonies composed of an equal live weight of small workers, and colonies with high tempos respire more than lower tempo colonies of equal weight. The tempos and respiration rates of smaller ants tend to be higher, and a higher tempo exacts a cost in higher respiration independent of the effect of small body size. Individual worker respiration (μL CO2 h?1) scales to worker live weight with an exponent of 0.76. Whole colony specific respiration rate (μL CO2 g?1 h?1) is unrelated to colony live weight. The regressions of respiration rates against colony and worker dry weight, lean weight and metabolic weight have similar slopes to those of live weight but different intercepts. Respiration is not related to worker percentage fat, percentage brood or activity. Ant ecology, tempo, body size, polymorphism and colony size are discussed in relation to respiration.  相似文献   

15.
《Animal behaviour》1986,34(4):1172-1181
Running speeds of Myrmica punctiventris and Aphaenogaster rudis workers were measured, and a good correspondence between laboratory and field behaviour was obtained. In the laboratory, foraging tempo and foraging efficiency were calculated for two colony sizes and five patterns of prey availability. Running speeds were strongly dependent on colony size for both species; when retrieving prey, foragers from large colonies ran significantly faster than those from small colonies. In addition, ants searching for prey ran more slowly than those returning to the nest with prey. Efficiency, measured as the propensity to return to the nest in a straight line, was most strongly a function of distance from the nest. Finally, no relationship between an ant's speed and its efficiency of return was found.  相似文献   

16.
Ant colonies can reproduce by two strategies: independent foundation, wherein the queen starts a new colony alone, and dependent foundation, in which workers assist the queen. In the queenless species Dinoponera quadriceps (Santschi), the colony reproduces obligatorily by fission, a type of dependent foundation, but this process is not well understood. This study describes a colony fission event of D. quadriceps in the field and analyzes the influence of the fission process on workers’ extra-nest behavior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, conflict stage, and post-conflict stage. The colony was initially monodomic and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter’s disappearance. Colony fission affected workers’ extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. After the fission event, the number of foragers was halved and foragers remained nearer to the nest during extra-nest activity. The spatial closeness of the parental and daughter colonies led to competition that caused the extinction or migration of the parental colony. Intraspecific competition was indicated by foraging directionality at the colony level, whereby areas of neighbor colonies were avoided; this directionality was stronger while both colonies coexisted.  相似文献   

17.
We investigated the effects of nest box climate on early mink kit mortality and growth. We hypothesised that litters in warm nest boxes experience less hypothermia-induced mortality and higher growth rates during the 1st week of life. This study included data from 749, 1-year-old breeding dams with access to nesting materials. Kits were weighed on days 1 and 7, dead kits were collected daily from birth until day 7 after birth, and nest climate was measured continuously from days 1 to 6. We tested the influences of the following daily temperature (T) and humidity (H) parameters on the number of live-born kit deaths and kit growth: Tmean, Tmin, Tmax, Tvar (fluctuation) and Hmean. The nest microclimate experienced by the kits was buffered against the ambient climate, with higher temperatures and reduced climate fluctuation. Most (77.0%) live-born kit deaths in the 1st week occurred on days 0 and 1. Seven of 15 climate parameters on days 1 to 3 had significant effects on live-born kit mortality. However, conflicting effects among days, marginal effects and late effects indicated that climate was not the primary cause of kit mortality. Five of 30 climate parameters had significant effects on kit growth. Few and conflicting effects indicated that the climate effect on growth was negligible. One exception was that large nest temperature fluctuations on day 1 were associated with reduced deaths of live-born kit (P<0.001) and increased kit growth (P=0.003). Litter size affected kit vitality; larger total litter size at birth was associated with greater risks of kit death (P<0.001) and reduced growth (P<0.001). The number of living kits in litters had the opposite effect, as kits in large liveborn litters had a reduced risk of death (P<0.001) and those with large mean litter size on days 1 to 7 had increased growth (P=0.026). Nest box temperature had little effect on early kit survival and growth, which could be due to dams’ additional maternal behaviour. Therefore, we cannot confirm that temperature is the primary reason for kit mortality, under the conditions of plenty straw access for maternal nest building. Instead, prenatal and/or parturient litter size is the primary factor influencing early kit vitality. The results indicate that the focus should be on litter size and dam welfare around the times of gestation and birth to increase early kit survival in farmed mink.  相似文献   

18.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

19.
The central-place forager in a social-insect colony, e.g., the bumblebee, has been expected to maximize its net rate of energy gain to increase the success of its colony. In addition to foraging behavior, the nest location is an important factor for the success of the colony. The bumblebee’s nest location would be affected by the spatial distribution of flowers and their food quality. In this study, we constructed a model to estimate bumblebee nest sites, using the net energy intake rate at available food sites for workers foraging from the nest site. We hypothesized that the probability of colony establishment at a site in coordinates (x, y) was high as the sum of the net energy intake rate I(x, y) increased. To obtain I(x, y), nectar standing crop, sugar concentration, and foraging time were measured for ten plant species in the study site covering 6.25 km2. As available flowers changed seasonally, I(x, y) was calculated for three periods: the end of April, the beginning of May, and the middle of May. To verify our hypothesis, we compared the estimations in our model with the actual nest sites of Bombus ardens found in the beginning of May and June by means of tracking bumblebees. From the results, we considered that the net energy intake rate at mid-May might represent the probability of colony establishment, because it could affect colony persistence and reproductive success.  相似文献   

20.
In the slave-making ant Protomognathus americanus, scout workers leave their colony, discover host colonies, and initiate slave raids. Captured host pupae subsequently emerge in the slavemaker colony and replenish the slave workforce. The course of these antagonistic encounters can be influenced by the species, aggressivity, or size of the host colony. We asked how the demography of parasite and host colonies influences the initial raiding phase by observing the scouting behaviour of P. americanus slavemakers during 48 raiding attempts. Experiments were performed under controlled laboratory conditions in a Y-shaped experimental arena. The number of active scouts increased with increasing slavemaker worker numbers, but was unaffected by the slave to slavemaker ratio, showing that slavemaker worker numbers are a good indicator for the scouting workforce. Colonies with fewer slaves discovered host colonies faster (colonies with 15 or less slaves: median 9:53 min, colonies with 42 or more slaves: median 18:55 min), suggesting that small slave workforces lead to intensified scouting behaviour. The more scouts were active, the faster a host colony was discovered, but the time between discovery and trial completion was unaffected by slavemaker colony demography. Host colonies were successfully attacked in 79.2 % of the trials, and they fought off an intruding scout only once. Yet host aggression towards slavemaker scouts increased with host colony size, and higher aggression rates delayed a subsequent attack. Our study demonstrates that colony size influences the behaviour and the course of crucial interspecific interactions of a social parasite and its host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号