首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Honeybees selected for the colony level phenotype of storing large quantities of pollen (pollen hoarding) in the nest exhibit greater walking activity than those selected against pollen hoarding. In this study, we use a simple walking assay to demonstrate that walking activity increases with the proportion of high pollen-hoarding alleles in pure and backcrossed strains of bees (high-strain bees > offspring generated from a high backcross > offspring generated from a low backcross > low-strain bees). The trait is heritable but is not associated with markers linked to three quantitative trait loci (QTL) mapped for their effects on pollen hoarding with demonstrated pleiotropic effects on pollen and nectar foraging and learning behavior. However, locomotion in non-selected bees is correlated with responsiveness to sucrose, a trait that correlates with foraging and learning behavior. We propose that pollen-hoarding behavior involves a syndrome of behavioral traits with complex genetic and regulatory architectures that span sensory sensitivity, foraging behavior, and learning. We propose that locomotor activity is the component of this syndrome and reflects the early maturation of the bees that become pollen foragers.  相似文献   

2.
Honey bee foragers were tested for their proboscis extension response (PER) to water and varying solutions of sucrose. Returning pollen and nectar foragers were collected at the entrance of a colony and were assayed in the laboratory. Pollen foragers had a significantly higher probability of responding to water and to lower concentrations of sucrose. Bees derived from artificially selected high- and low-pollen-hoarding strains were also tested using the proboscis extension assay. Returning foragers were captured and tested for PERs to 30% sucrose. Results demonstrated a genotypic effect on PERs of returning foragers. The PERs of departing high- and low-strain foragers were consistent with those of returning foragers. The PERs were related to nectar and water reward perception of foragers. High strain bees were more likely to return with loads of water and lower concentrations of sucrose than foragers from the low pollen strain. Low-strain bees were more likely to return empty. We identified a previously mapped genomic region that contains a variable quantitative trait locus that appears to influence sucrose response thresholds. These studies demonstrate a gene-brain-behavior pathway that can be altered as a consequence of colony-level selection for quantities of stored food. Accepted: 3 September 1997  相似文献   

3.
Tsuruda JM  Amdam GV  Page RE 《PloS one》2008,3(10):e3397

Background

Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The ‘pollen-hoarding syndrome’ of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.

Methodology/Principal Findings

Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6–7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.

Conclusions/Significance

Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.  相似文献   

4.
In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.  相似文献   

5.
The widespread use of protective covers in horticulture represents a novel landscape‐level change, presenting the challenges for crop pollination. Honeybees (Apis mellifera L) are pollinators of many crops, but their behavior can be affected by conditions under covers. To determine how netting crop covers can affect honeybee foraging dynamics, colony health, and pollination services, we assessed the performance of 52 nucleus honeybee colonies in five covered and six uncovered kiwifruit orchards. Colony strength was estimated pre‐ and postintroduction, and the foraging of individual bees (including pollen, nectar, and naïve foragers) was monitored in a subset of the hives fitted with RFID readers. Simultaneously, we evaluated pollination effectiveness by measuring flower visitation rates and the number of seeds produced after single honeybee visits. Honeybee colonies under cover exhibited both an acute loss of foragers and changes in the behavior of successful foragers. Under cover, bees were roughly three times less likely to return after their first trip outside the hive. Consequently, the number of adult bees in hives declined at a faster rate in these orchards, with colonies losing on average 1,057 ± 274 of their bees in under two weeks. Bees that did forage under cover completed fewer trips provisioning their colony, failing to reenter after a few short‐duration trips. These effects are likely to have implications for colony health and productivity. We also found that bee density (bees/thousand flowers) and visitation rates to flowers were lower under cover; however, we did not detect a resultant change in pollination. Our findings highlight the need for environment‐specific management techniques for pollinators. Improving honeybee orientation under covers and increasing our understanding of the effects of covers on bee nutrition and brood rearing should be primary objectives for maintaining colonies and potentially improving pollination in these systems.  相似文献   

6.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

7.
The perception of sugar is important to honey bees for making foraging decisions. We measured bees' perception by determining what concentration of sucrose touched to the antennae elicited the proboscis extension response (response threshold). A low response threshold (extension at low concentration) suggests a high perceptual value of sucrose. and vice versa. Perception of sucrose solutions differed between two artificially selected genotypic strains and was modulated by the bees' recent feeding experiences. Bees offered 10%, 30%, or 50% sucrose solutions in small cages overnight, and in large flight-cages or free-flying in the field for several days, had subsequent response thresholds positively correlated to the concentration offered. Empty bees, whether they were nectar, water or pollen foragers, dancers or non-dancers, had a significantly lower threshold than loaded bees. Crop volume affected response thresholds directly and independently of sucrose concentration. We interpret these findings as multiple mechanisms that operate in different time scales, modulating perception of sucrose. Changes occurred in the time scale of evolutionary processes as demonstrated by genotypic differences. Changes with foraging experience occur in hours or minutes while effects of crop filling are instantaneous.  相似文献   

8.
Nosema ceranae and pesticide exposure can contribute to honey bee health decline. Bees reared from brood comb containing high or low levels of pesticide residues were placed in two common colony environments. One colony was inoculated weekly with N. ceranae spores in sugar syrup and the other colony received sugar syrup only. Worker honey bees were sampled weekly from the treatment and control colonies and analyzed for Nosema spore levels. Regardless of the colony environment (spores+syrup added or syrup only added), a higher proportion of bees reared from the high pesticide residue brood comb became infected with N. ceranae, and at a younger age, compared to those reared in low residue brood combs. These data suggest that developmental exposure to pesticides in brood comb increases the susceptibility of bees to N. ceranae infection.  相似文献   

9.
Honey bees collect distinct nutrient sources in the form ofnectar (energy) and pollen (nitrogen). We investigated the effectof varying energy stores on nectar and pollen foraging. We foundno significant changes in nectar foraging in response to changesin honey storage levels within colonies. Individual foragersdid not vary activity rates or nectar load sizes in responseto changes in honey stores, and colonies did not increase nectarintake rates when honey stores within the hive were decreased.This result contrasts with pollen foraging behavior, which isextremely sensitive to colony state. Our data show that individualforaging decisions during nectar collection and colony regulationof nectar intake are distincdy different from pollen foraging.The behavior of honey bees illustrates that foraging strategy(and therefore foraging models) can incorporate multiple currencies,including both energy and protein intake.[Behav Ecol 7: 286–291(1996)]  相似文献   

10.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   

11.

Background

Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences.

Methodology

Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics.

Principal Findings

Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes.

Conclusions

This work demonstrates the accessibility of chemosensory information in the honeybee colonies with respect to incoming nectar. The modulation of the sensory-response systems within the hive can have important effects on the dynamics of food transfer and information propagation.  相似文献   

12.
The internal temperature of flowers may be higher than air temperature, and warmer nectar could offer energetic advantages for honeybee thermoregulation, as well as being easier to drink owing to its lower viscosity. We investigated the responses of Apis mellifera scutellata (10 colonies) to warmed 10% w/w sucrose solutions, maintained at 20–35°C, independent of low air temperatures, and to 20% w/w sucrose solutions with the viscosity increased by the addition of the inert polysaccharide Tylose (up to the equivalent of 34.5% sucrose). Honeybee crop loads increased with nectar temperature, as did the total consumption of sucrose solutions over 2 h by all bees visiting the feeders. In addition, the preference of marked honeybees shifted towards higher nectar temperatures with successive feeder visits. Crop loads were inversely proportional to the viscosity of the artificial nectar, as was the total consumption of sucrose solutions over 2 h. Marked honeybees avoided higher nectar viscosities with successive feeder visits. Bees thus showed strong preferences for both warmer and less viscous nectar, independent of changes in its sugar concentration. Bees may benefit from foraging on nectars that are warmer than air temperature for two reasons that are not mutually exclusive: reduced thermoregulatory costs and faster ingestion times due to the lower viscosity.  相似文献   

13.
Bees derived from artificially selected high- and low-pollen-hoarding strains were tested for their proboscis extension reflex response to water and varying sucrose concentrations. High-strain bees had a lower response threshold to sucrose than low-strain bees among pre-foragers, foragers, queens and drones. Pre-foraging low-strain workers showed ontogenetic changes in their response threshold to sucrose which was inversely related to age. High-strain foragers were more likely to return with loads of water compared to low-strain foragers. Whereas low-strain foragers were more likely to return with loads of nectar. Low-strain nectar foragers collected nectar with significantly higher sucrose concentrations than did the high-strain nectar foragers. Alternatively, low-strain foragers were more likely to return empty compared to high-strain foragers. These studies demonstrate how a genotypically varied sensory-physiological process, the perception of sucrose, are associated with a division of labor for foraging. Accepted: 27 October 1998  相似文献   

14.
This study was conducted at the apiary of the Agricultural and Veterinary Training and Research Station of King Faisal University in the Al-Ahsa oasis of eastern Saudi Arabia. We performed a comparison between Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) honeybee races to determine the monthly fluctuations in foraging activity, pollen collection, colony growth and honey yield production under the environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. We found three peaks in the flight activity of the two races, and the largest peaks occurred during September and October. Compared to Carniolan bee colonies, the performance of Yemeni bee colonies was superior in terms of stored pollen, worker and drone brood rearing, and the adult population size. The Carniolan bee colonies produced 27.77% and 27.50% more honey than the Yemeni bee colonies during the flow seasons of alfalfa and sidir, respectively, with an average increase of 27.64%. It could be concluded that the race of bees is an important factor affecting the activity and productivity of honeybee colonies. The Yemeni bee race produced more pollen, a larger brood and more bees, which exhibited a longer survival. The imported Carniolan bees can be reared in eastern Saudi Arabia, but the Yemeni bee race is still better.  相似文献   

15.
Abstract.  1. Each autumn in northern regions, honeybee colonies shift from populations of short-lived workers that actively rear brood to broodless populations of long-lived winter bees. To determine if dwindling pollen resources trigger this transition, the natural disappearance of external pollen resources was artificially accelerated or delayed and colonies were monitored for effects on the decline in brood-rearing activity and the development of populations of long-lived winter bees.
2. Delaying the disappearance of pollen resources postponed the decline in brood rearing in colonies. Colonies with an extended supply of pollen reared workers longer into October before brood rearing ended than control colonies or colonies for which pollen supply was cut short artificially in autumn.
3. Colonies with extended pollen supply produced more workers throughout autumn than colonies with less pollen, but the development of the population of long-lived winter bees was delayed until relatively later in autumn. Colonies produced similar numbers of winter bees, regardless of the timing of the disappearance of pollen resources.
4. Mean longevity of autumn-reared workers was inversely related to the amount of brood remaining to be reared in colonies when workers eclosed. Consequently, long-lived workers did not appear in colonies until brood rearing declined, which in turn was controlled by the availability of pollen.
5. Dwindling pollen resources provide a powerful cue that initiates the transition to populations of broodless winter bees because it directly affects the brood-rearing capacity of colonies and indirectly indicates deteriorating environmental conditions associated with the approach of winter.  相似文献   

16.
Division of labour in social insect colonies relies on behavioural functional differentiation (specialization) of individuals with similar genomes. However, individual behavioural traits do not evolve independently of each other (behavioural syndromes). A prime example is the suite of behavioural differences in honeybee workers that has evolved in response to bidirectional selection on pollen hoarding of honeybee colonies (pollen-hoarding syndrome). More generally, these differences reflect functional differentiation between nectar and pollen foragers. We demonstrate here that this pollen-hoarding syndrome extends to drones. Similar to what has been shown in workers, drones from the high-pollen-hoarding strain had a higher locomotion activity after emergence, and they initiated flight earlier than did males derived from the low-pollen-hoarding strain, with hybrids intermediate. However, these two behavioural traits were unlinked at the individual level. We also found that social environment (the colony) affects the age at which drones initiate flight. The indirect selection responses of male behaviour suggest that male and worker evolution are not independent and may constrain each other's evolution. Furthermore, we identified three distinct peaks in the probability of flight initiation over the course of the experiment and a decreased phenotypic variability in the 'hybrid' males, contrary to quantitative genetic expectations.  相似文献   

17.
Four hundred and thirty records of the numbers of bees in honeybee colonies and of the amounts of brood and pollen present have been kept during various months of the years 1945-53, and the data have been used to calculate total and partial regression coefficients showing the influence of stored pollen and of colony size on brood rearing throughout the year.
It was found that pollen storage and colony size were correlated but that, even allowing for this, colony size and pollen both independently influenced brood rearing.
The annual distribution of the total regression coefficients of brood on pollen was somewhat similar to the brood curve itself, rising from a minimum in October and November to a maximum in midsummer, while the partial regression coefficients showed less clearly marked but similar features.
Both total and partial regression coefficients showing the influence of colony size on the amount of brood reared were also at a minimum in October and November, but reached their peaks in May.
The quantities of brood present in these colonies at Aberdeen, Scotland, followed a pattern similar to that given by Nolan for colonies near Washington, D.C.  相似文献   

18.
The production of male sexual offspring by social insect colonies is often strongly seasonal or resource-dependent. In stingless bees, males are produced in smaller numbers under conditions of low colony food reserves; whether such males are negatively affected in traits related to reproductive success is not known. We compared body size, sperm production and sexual maturity in Melipona beecheii males reared with experimentally supplemented or reduced pollen reserves, but with otherwise equal numbers of workers and equal quantities of honey reserves. We also studied the same traits in males collected from non-manipulated colonies with pollen reserves intermediate between the supplemented or reduced groups but with more workers and honey reserves. Males reared under experimentally reduced pollen reserves had significantly smaller bodies and lower sperm counts compared to those reared in colonies with experimentally supplemented pollen reserves. There was also a significantly positive relationship between the number of sperm and body size in males across all colony treatments. The maximum number of sperm in seminal vesicles was recorded 2 days later in males from colonies with reduced pollen compared to males from colonies with supplementary pollen. Males from non-manipulated colonies were intermediate in size, sperm count and speed of maturation. Our study documents for the first time the existence of large size variation in males of stingless bees that is related with the amount of pollen reserves in their natal colony. We conclude that a colony’s pollen reserves have a major impact on male body size, sperm production and speed of sexual maturity in this stingless bee, which may be the case in other social insects. Stingless bees are a good model system to study the balance between colony-level selection and individual-level selection on male sexually selected traits such as body size.  相似文献   

19.
The responsiveness of bees to sucrose is an important indicator of honey bee foraging decisions. Correlated with sucrose responsiveness is forage choice behavior, age of first foraging, and conditioned learning response. Pheromones and hormones are significant components in social insect systems associated with the regulation of colony-level and individual foraging behavior. Bees were treated to different exposure regimes of queen and brood pheromones and their sucrose responsiveness measured. Bees reared with queen or brood pheromone were less responsive than controls. Our results suggest responsiveness to sucrose is a physiologically, neuronally mediated response. Orally administered octopamine significantly reduced sucrose response thresholds. Change in response to octopamine was on a time scale of minutes. The greatest separation between octopamine treated and control bees occurred 30 min after feeding. There was no significant sucrose response difference to doses ranging from 0.2 g to 20 g of octopamine. Topically applied methoprene significantly increased sucrose responsiveness. Handling method significantly affected sucrose responsiveness. Bees that were anesthetized by chilling or CO2 treatment were significantly more responsive than control bees 30 min after handling. Sixty minutes after handling there were no significant treatment differences. We concluded that putative stress effects of handling were blocked by anesthetic.Abbreviations BP brood pheromone - JH juvenile hormone - OA octopamine - PER proboscis extension response - PER-RT proboscis extension response threshold - QMP queen mandibular pheromone  相似文献   

20.
Nectar is a vital source of energy for bees and other pollinators and pollen represents the only source of protein in the diet of bees. Nectar and pollen quality and quantity can therefore affect foraging choices. Strawberry, Fragaria × ananassa (Rosaceae), is a flowering crop that requires insect pollination for the berries to develop optimally. The solitary red mason bee, Osmia bicornis L. (Hymenoptera: Megachilidae), occurs naturally but like the eusocial western honeybee, Apis mellifera mellifera L. (Hymenoptera: Apidae), it is also a commercially reared pollinator used in strawberry production. We hypothesized that strawberry nectar and pollen quality would affect the foraging choice of these two types of bees. In this study nectar and pollen quality is represented by various levels of sugar and protein content, respectively, as well as the number of open strawberry flowers in the experimental field, would affect the foraging choice of these two types of bees. Consistent with previous studies, we found significant and major differences between strawberry varieties in proportions of sucrose in the nectar sugar and in pollen viability – a proxy for pollen protein content. All measured parameters had a significant effect on red mason bee visitation frequency. Contrary to expectations, honeybee foraging behavior was only affected by the number of open flowers and not by any of the quality parameters measured. Our findings indicate that red mason bees were capable of assessing nectar and pollen quality and prioritize accordingly. The pattern observed indicates that individual red mason bees changed foraging focus between strawberry varieties depending on whether nectar or pollen was collected. Our results suggest that targeted breeding of varieties toward high levels of nectar sugar and sucrose concentrations and high pollen protein content may increase pollination success from red mason bees and possibly other solitary bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号