首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cilio-excitatory serotonergic innervation of lateral gill cilia of Mytilus edulis was studied in vivo. Peripheral serotonin release was dependent on the external calcium concentration. Serotonin release was inhibited by autodialyzing calcium from the tissue or by increasing the calcium concentration in the medium, as determined by measuring ciliary activity stroboscopically and by biochemical and radioassays of serotonin. Lithium also inhibited serotonin release when added to the external bathing medium. Concomitantly, altering calcium concentrations altered the degree of inhibition of serotonin release caused by lithium. The study demonstrates that the terminal release of the monoamine serotonin is a calcium-dependent mechanism. The pharmacological effects of lithium in this system appear to be interrelated with the calcium-dependent releasing mechanism.  相似文献   

2.
Ciliated epithelial cells from rabbit trachea were employed to examine the role of Ca2+ in the regulation of ciliary motility. Tracheal explants and outgrowths were maintained in culture, and ciliary frequency was determined using a photomultiplier interfaced with a spectrum analyzer capable of Fast Fourier transform analysis. Relative cellular Ca2+ levels were determined by measuring 45Ca2+ uptake and efflux. Elevated cellular Ca2+, from exposure to 10(-5) M calcium ionophore A23187, led to an increase in ciliary frequency followed by inhibition of motility after prolonged treatment. A decrease in ciliary frequency was observed upon lowering intracellular Ca2+ by exposing the epithelium to 1 mM EGTA. Exposure of ciliated cells to 10(-4) M trifluoperazine resulted in inhibition of ciliary motility, a result suggesting a possible role for calmodulin- or phospholipid-sensitive Ca2+-dependent protein kinases in ciliary function. These results support the hypothesis that intracellular Ca2+ is actively involved in modulating the frequency of ciliary beat.  相似文献   

3.
Calmodulin has been isolated and characterized from the gill of the bay scallop aequipecten irradians. Quantitative electrophoretic analysis of epithelial cell fractions show most of the calmodulin to be localized in the cilia, specifically in the detergent- solubilized membrane-matrix fraction. Calmodulin represents 2.2 +/- 0.3 percent of the membrane-matrix protein or 0.41 +/- 0.5 percent of the total ciliary protein. Its concentration is at least 10(-4) M if distributed uniformly within the matrix. Extraction in the presence of calcium suggests that the calmodulin is not bound to the axoneme proper. The ciliary protein is identified as a calmodulin on the basis of its calcium- dependent binding to a fluphenazine-sepharose affinity column and its comigration with bovine brain calmodulin on alkaline-urea and SDS polyacrylamide gels in both the presence and absence of calcium. Scallop ciliary calmodulin activates bovine brain phosphodiesterase to the same extent as bovine brain and chicken gizzard calmodulins. Containing trimethyllysine and lacking cysteine and tryptophan, the amino acid composition of gill calmodulin is typical of known calmodulins, except that it is relatively high in serine and low in methionine. Its composition is less acidic than other calmodulins, in agreement with an observed isoelectric point approximately 0.2 units higher than that of bovine brain. Comparative tryptic peptide mapping of scallop gill ciliary and bovine brain calmodulins indicates coincidence of over 75 percent of the major peptides, but at least two major peptides in each show no near-equivalency. Preliminary results using ATP-reactivated gill cell models show no effect of calcium at micromolar levels on ciliary beat or directionality of the lateral cilia, the cilia which constitute the vast majority of those isolated. However, ciliary arrest will occur at calcium levels more than 150 muM. Because calmodulin usually functions in the micromolar range, its role in this system is unclear. Scallop gill ciliary calmodulin may be involved in the direct regulation of dyneintubule sliding, or it may serve some coupled calcium transport function. At the concentration in which it is found, it must also at least act as a calcium buffer.  相似文献   

4.
We asked to what extent Ca(2+) signals in two different domains of Paramecium cells remain separated during different stimulations. Wild-type (7S) and pawn cells (strain d4-500r, without ciliary voltage-dependent Ca(2+)-channels) were stimulated for trichocyst exocytosis within 80 ms by quenched-flow preparation and analysed by energy-dispersive X-ray microanalysis (EDX), paralleled by fast confocal fluorochrome analysis. We also analysed depolarisation-dependent calcium signalling during ciliary beat rerversal, also by EDX, after 80-ms stimulation in the quenched-flow mode. EDX and fluorochrome analysis enable to register total and free intracellular calcium concentrations, [Ca] and [Ca(2+)], respectively. After exocytosis stimulation we find by both methods that the calcium signal sweeps into the basis of cilia, not only in 7S but also in pawn cells which then also perform ciliary reversal. After depolarisation we see an increase of [Ca] along cilia selectively in 7S, but not in pawn cells. Opposite to exocytosis stimulation, during depolarisation no calcium spill-over into the nearby cytosol and no exocytosis occurs. In sum, we conclude that cilia must contain a very potent Ca(2+) buffering system and that ciliary reversal induction, much more than exocytosis stimulation, involves strict microdomain regulation of Ca(2+) signals.  相似文献   

5.
The duration of ciliary reversal of Paramecium caudatum in response to changes in external ionic factors was determined with various ionic compositions of both equilibration and stimulation media. The reversal response was found to occur when calcium ions bound by an inferred cellular cation exchange system were liberated in exchange for externally applied cations other than calcium. Factors which affect the duration of the response were (a) initial amount of calcium bound by the cation exchange system, (b) final amount of calcium bound by the system after equilibration with the stimulation medium, and (c) concentration of calcium ions in the stimulation medium. An empirical equation is presented which relates the duration of the response to these three factors. On the basis of these and previously published data, the following hypothesis is proposed for the mechanism underlying ciliary reversal in response to cationic stimulation: Ca++ liberated from the cellular cation exchange system activates a contractile system which is energized by ATP. Contraction of this component results in the reversal of effective beat direction of cilia by a mechanism not yet understood. The duration of reversal in live paramecia is related to the time course of bound calcium release.  相似文献   

6.
To assess the potential role of G-proteins in chemokinesis, Paramecium tetraurelia was pre-incubated with the G-protein modulator pertussis toxin. Pertussis toxin pretreatment significantly reduced Paramecium chemoattraction to sodium acetate and ammonium chloride in T-maze behavioral assays and depressed the frequency of avoidance reactions, indicating that heterotrimeric G-proteins may be involved with the motility response. To determine whether G-proteins exert their effect via the ciliary voltage-sensitive calcium channel, we examined responses of P. tetraurelia to the potent voltage-sensitive calcium channel agonist, deltamethrin. Pertussis toxin preincubation significantly reduced the toxic effects of deltamethrin exposure as determined by survival under depolarizing conditions and reduced the duration of backward swimming episodes in behavioral bioassays. Furthermore, non-hydrolyzable analogs of guanine nucleotides altered deltamethrin-stimulated calcium influx via calcium channels in isolated ciliary vesicles. Heterotrimeric G-protein subunits were subsequently detected in ciliary vesicles of P. tetraurelia by antibodies produced against Galpha and Gbeta subunits, and by 32P-ADP-ribosylation, indicating that proteins of the appropriate molecular weight are the target of pertussis toxin in these vesicles. These findings provide additional evidence that heterotrimeric G-proteins are associated with ciliary vesicles and that they play a role in the modulation of swimming behavior and the toxic action of deltamethrin in Paramecium.  相似文献   

7.
The ciliary muscle which is involved in accommodation and regulation of aqueous humour outflow resistance resembles smooth muscle in other parts of the body. In the present investigation we used an established primary cell line (H7CM) to study the effects of endothelin, a novel vasoconstrictor peptide, on membrane voltage (V) and intracellular calcium in cultured human ciliary muscle cells. Membrane voltage was measured in confluent monolayers of H7CM cells using conventional microelectrodes. Intracellular calcium concentration [( Ca]i) was measured in single H7CM cells using the fluorescent calcium indicator fura-2. Under resting conditions V averaged -66.9 +/- 0.7 mV (mean +/- SEM, n = 125). Endothelin (10(-10)-10(-6)M) induced a dose-dependent reversible membrane voltage depolarization and a dose-dependent rise in [Ca]i. The initial calcium peak was followed by a recovery phase during which oscillations of [Ca]i occurred. The initial calcium peak was not dependent on the presence of extracellular calcium and was not abolished in the presence of the calcium antagonist verapamil (10(-4)M). Thus it is probably mediated by a release of calcium from intracellular reservoirs. We conclude that cultured human ciliary muscle cells express a functional endothelin receptor.  相似文献   

8.

Background

Ciliary dysfunction leads to a number of human pathologies, including primary ciliary dyskinesia, nephronophthisis, situs inversus pathology or infertility. The mechanism of cilia beating regulation is complex and despite extensive experimental characterization remains poorly understood. We develop a detailed systems model for calcium, membrane potential and cyclic nucleotide-dependent ciliary motility regulation.

Results

The model describes the intimate relationship between calcium and potassium ionic concentrations inside and outside of cilia with membrane voltage and, for the first time, describes a novel type of ciliary excitability which plays the major role in ciliary movement regulation. Our model describes a mechanism that allows ciliary excitation to be robust over a wide physiological range of extracellular ionic concentrations. The model predicts the existence of several dynamic modes of ciliary regulation, such as the generation of intraciliary Ca2+ spike with amplitude proportional to the degree of membrane depolarization, the ability to maintain stable oscillations, monostable multivibrator regimes, all of which are initiated by variability in ionic concentrations that translate into altered membrane voltage.

Conclusions

Computational investigation of the model offers several new insights into the underlying molecular mechanisms of ciliary pathologies. According to our analysis, the reported dynamic regulatory modes can be a physiological reaction to alterations in the extracellular environment. However, modification of the dynamic modes, as a result of genetic mutations or environmental conditions, can cause a life threatening pathology.  相似文献   

9.
The ciliary beat and cell motility of Dunaliella, a biflagellate unicellular green alga, have been studied by means of computer analysis of high-speed microcinematography and laser doppler velocimetry. Lindane was found rapidly to inhibit cell velocity in less than 5 min. and in a dose-related manner. After the initial 5-min. period, inhibition remained nearly stable for at least 3 hr. The waveform of the ciliary beat was not uniformly affected by lindane and only the effective stroke was greatly slowed down. The recovery stroke was not significantly modified, and the general form of the wave did not seem to be altered. Bending parameters automatically measured from high-speed movies showed that lindane induced a considerable lengthening of the initiation phase of wave propagation. Since lindane interacts specifically with calcium transport and can induce an increase in cytoplasmic calcium, the strong effect of lindane on ciliary beat is probably correlated with a modification of the calcium balance of the cell. These results support the hypothesis of a control of bend initiation by calcium.  相似文献   

10.
Regulation of ciliary activity in the mammalian respiratory tract   总被引:1,自引:0,他引:1  
A computer-assisted transillumination, photoelectronic technique has been used to measure the beat frequency of cilia of rabbit tracheal cells grown in culture. When ciliated cells are mechanically stimulated with a microprobe the cells respond rapidly by increasing the beat frequency of their cilia. This mechanosensitive response is not limited to the stimulated cell, but is communicated in all directions to neighboring cells. To characterize the progression of this communicated response we used an automated computer-assisted imaging system to examine high-speed films of responding cells. The time it takes for the response to be transmitted between cells is slow (1-3 sec) with each cell responding after a lag-time that is proportional to the distance of the cell from the stimulated cell. We have confirmed that gap junctions are present between cells and that adjacent or non-adjacent ciliated, as well as non-ciliated, cells are electrically coupled. To correlate the mechanosensitive response with intracellular calcium fluxes we have used fura-2, a calcium-specific fluorescent dye, and digital video microscopy. Mechanical stimulation of the cultured ciliated cells, in the presence of extracellular calcium, resulted in an initial increase in intracellular calcium, which was communicated to neighboring cells. Without extracellular calcium, mechanosensitivity of cultured cells was lost and a small decrease in intracellular calcium was observed in the stimulated cell. However, neighboring cells still displayed an increase in intracellular calcium. The time course and general pattern of calcium increase in adjacent cells was similar to the responses in ciliary activity produced by mechanical stimulation. Ciliary beat frequency is also elevated by beta-adrenergic drugs independently of mechanosensitivity. These responses are important because they could provide a dual regulatory mechanism for the control of mucus transport. Adrenergic agonists could provide non-specific control by increasing ciliary activity throughout the airways while mechanosensitivity could provide local control by increasing activity in those regions of heavy mucus load.  相似文献   

11.
1. Lateral ciliary activity was studied on the ctenidial preparations of several bivalves.2. The cerebral and visceral ganglia exhibit a coordinated role in the control of ciliary beating.3. Exposure of the ctenidia to changes in potassium and magnesium ion concentrations at acclimation salinities were salinity-dependent and probably reflect an effect on the ciliated epithelium.4. The magnitude of cilio-inhibition is directly related to the percentage of lamellar conversions in cytosomes.5. Since sequestered calcium has been shown to be released from lamellar-type cytosomes, it is postulated that lateral cilio-inhibition is due to an increase in the neuronal intracellular calcium concentration with subsequent release of the cilio-inhibitory neurotransmitter, dopamine.6. There is a seasonal effect on cytosomal transformations and decarboxylase activity in neuronal tissues both in the central and peripheral elements and lateral ciliary activity.7. The experimental design and procedures used in our studies will have broad applications for quantitatively assessing the effects of environmental factors on ciliary activity of marine and estuarine organisms.  相似文献   

12.

Purpose

To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor.

Methods

Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated.

Results

Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951.

Conclusions

The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye.  相似文献   

13.
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.  相似文献   

14.
Calcium plays an important regulatory role in olfactory signal transduction. Many investigations into the regulation of the olfactory signaling pathway have been performed using fractions enriched in ciliary membranes from olfactory sensory neurons. The traditional method of preparing ciliary fractions uses high calcium concentrations, thought to dislodge cilia from the dendritic knobs of the olfactory neurons in the nasal epithelium. However, calcium, an important second messenger in the odorant signaling cascade, modulates the activity of many enzymatic reactions in this cascade. Pre-exposure of cilia to high calcium concentrations may modify these signaling events. Therefore, we sought to develop a method of isolating cilia-enriched membranes that avoids exposing the cilia to high calcium concentrations. Our method of isolation, referred to as the mechanical agitation method, involves mechanical disruption and sonication of the olfactory epithelium to dislodge the cilia. To evaluate this method of cilia preparation, basal adenylyl cyclase activity, as well as forskolin- and odorant-activated adenylyl cyclase, were analyzed. Specific activity of adenylyl cyclase and protein yield were compared for the mechanical agitation and the high calcium preparations. Immunoblots were analyzed for the presence of transduction components enriched in olfactory cilia: adenylyl cyclase type III (ACIII), heterotrimeric G-protein subunit Galphaolf and the 1 C2 isoform of phosphodiesterase (PDE 1 C2). Based on these analyses, the ciliary fraction prepared by the mechanical agitation method appears to be very similar to that prepared by the high calcium method, with a higher yield.  相似文献   

15.
The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis.  相似文献   

16.
By means of scanning and transmission microscopy it has been examined the ciliary system of the tongue mucosa. The scanning electronmicrographs of the fungiform papillae have revealed three ciliary apparatuses allocated respectively: at the papillary summit (corona ciliata and a narrow but separated paracoronal ciliary system) and on the peduncolar papillary stem. The cilia of both paracoronal and peduncolar groups have not been yet described. Also the filiform papillae are supplied with cilia but as irregularly distributed groups. The border of the tongue is a continuous and normal ciliary epithelium and finally groups of cilia are scattered also on the whole sublingual epithelium. At the transmission microscopy the cells of all the examined mucosal ciliary groups are showing a normal ultrastructural aspect.  相似文献   

17.
Ctenophores, or comb jellies, are a distinct phylum of marine zooplankton with eight meridional rows of giant locomotory comb plates. Comb plates are the largest ciliary structures known, and provide unique experimental advantages for investigating the biology of cilia. Here, I review published and unpublished work on how ctenophores exploit both motile and sensory functions of cilia for much of their behavior. The long‐standing problem of ciliary coordination has been elucidated by experiments on a variety of ctenophores. The statocyst of ctenophores is an example of how mechanosensory properties of motile cilia orient animals to the direction of gravity. Excitation or inhibition of comb row beating provides adaptive locomotory responses, and global reversal of beat direction causes escape swimming. The diverse types of prey and feeding mechanisms of ctenophores are related to radiation in body form and morphology. The cydippid Pleurobrachia catches copepods on tentacles and undergoes unilateral ciliary reversal to sweep prey into its mouth. Mnemiopsis uses broad muscular lobes and ciliated auricles to capture and ingest prey. Beroë has giant smooth muscles and toothed macrocilia to rapidly engulf or bite through ctenophore prey, and uses reversible tissue adhesion to keep its mouth closed while swimming. Ciliary motor responses are calcium‐dependent, triggered by voltage‐activated calcium channels located along the length (reversed beating) or at the base (activation of beating) of ciliary membranes. Ciliary and muscular responses to stimuli are regulated by epithelial and mesogleal nerve nets with ultrastructurally identifiable synapses onto effector cells. Post‐embryonic patterns of comb row development in larval and adult stages are described and compared with regeneration of comb plates after surgical removal. Truly, cilia and ctenophores, like love and marriage, go together like a horse and carriage.  相似文献   

18.
自制显微荧光光度系统及其应用   总被引:4,自引:0,他引:4  
用自行开发的细胞显微荧光分光光度系统对神经细胞内游离的静息[Ca~(2 )]_j及其动态生理变化成功地进行了测定,实验结果证明系统工作稳定、重复性好,测定结果也符合公认的动态变化特点。本文报道了该项研究工作开发成功的细胞显微荧光光度系统及神经细胞内钙离子的分析测定过程及其结果。  相似文献   

19.
S Klumpp  P Cohen    J E Schultz 《The EMBO journal》1990,9(3):685-689
Backward swimming is a stereotypic behavioural response of Paramecium. It is triggered by depolarizing stimuli, which open calcium channels in the excitable ciliary membrane. The influx of Ca2+ causes the reversal of ciliary beat and initiates backward swimming. Here, we demonstrate that the protein phosphatase inhibitor okadaic acid does not affect the normal forward swimming pattern of Paramecium, but greatly extends the duration of backward swimming as initiated by depolarization caused by a rise in extracellular K+. Chelation of external Ca2+ results in an immediate resumption of forward swimming. The results suggest that the voltage-operated calcium channel is inactivated by a dephosphorylation event, and that okadaic acid blocks this dephosphorylation without any effect on the motile apparatus of the cilia. In addition, Paramecium is unique among eukaryotic cells, in that okadaic acid inhibits just one protein phosphatase, namely a type 1 enzyme, 75% of which is tightly associated with the excitable ciliary membrane. The type 2A protein phosphatases in Paramecium are unaffected by okadaic acid. The results indicate that protein phosphatase 1 is the enzyme responsible for the dephosphorylation and closure of the calcium channel in Paramecium.  相似文献   

20.
A mathematical model is proposed to explain the dependence of the direction and the length of the metachronal wave on parameters that characterize the ciliary beat, the dimensions of the cilia, and the geometry of their arrangement on the ciliated surface. The metachronal wave is decomposed into two mutually perpendicular components, which are chosen in such a way that the direction of one of them is in the direction of the effective stroke. The magnitudes of the two components are determined by using the concept of the time of delay between adjacent cilia. The properties of the metachronal wave are then calculated as a function of the ciliary parameters. The results obtained with the present model predict that the direction of the wave propagation is strongly dependent on the type of metachronism in the direction of the effective stoke and the polarization in time and in space of the ciliary beat. The metachronal wavelength is found to depend on four parameters: the ciliary length, the angle of the arc projected on the cell surface by the ciliary tip during the recovery stroke, the degree of asymmetry of ciliary beat, and the portion of the cycle occupied by the pause. The metachronal wavelength is also found to be only weakly dependent on the ciliary frequency. At this stage there exists relatively little experimental information with which to characterize fully the metachronal properties of ciliary systems. Even when only partial information exists, the model allows prediction, to within a certain range, of the direction of the wave propagation. It also suggests a possible mechanism for the influence of changes in environmental conditions on wave direction and wavelength. In several cases in which full information does exist, good agreement between the experimental findings and the predictions of the model is found. According to this model it will be worthwhile to invest more effort in measuring the time and space polarization of ciliary beating and times of delay between cilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号