首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the pedal ganglia ofClione limacina the growth of neurites is traced in motoneurons after transection of the wing nerve and in interneurons after transection of the pedal commissure. Neurons were stained intracellularly with Lucifer yellow. In the motoneurons the neurites growing from the transected end of the axon and from the neuron soma spread to all nerve trunks departing from the ipsi- and contralateral ganglia. For nerve transection in the intact mollusk, wing movements were restored 10 days after the operation. In the interneurons the growing neurites branched within the pedal ganglion or spread to the cerebral ganglia, but they never reached the periphery.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 449–455, July–August, 1985.  相似文献   

2.
Tonic activity of neurons of the superior cervical sympathetic ganglion was recorded by the "sucrose gap" method and in the 4th and 5th lumbar sympathetic ganglia with the aid of focal nonpolarizing electrodes in acute experiments on anesthetized cats and rabbits. The preganglionic fibers of the ganglia were left intact. Stimulation of the depressor nerve not only sharply inhibited the tonic activity of the ganglia but also led to the appearance of electropositive potentials of 0.7 ± 0.2 mV in the superior cervical ganglion and 20–250 µV in the lumbar ganglia. The amplitude of this potential was unchanged by atropine (1 · 10–6M). A similar effect occured without stimulation of the depressor nerve, after division of the preganglionic fibers or blocking of their conduction; it is attributed to the cessation of preganglionic tonic impulses which induce not only spikes, but also many EPSPs in neurons of the ganglion. Their frequency in the lumbar ganglia was 4/sec. Summation of these EPSPs leads to constant electronegativity of the ganglion surface relative to the postganglionic fibers, and its disappearance is recorded as a positive potential. Stimulation of the depressor nerve thus does not induce IPSPs in the ganglion; consequently, the inhibition of synaptic activity observed under these circumstances is located in the CNS and not in the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 5, pp. 519–524, September–October, 1974.  相似文献   

3.
The effect of anoxia and inhibitors of energy metabolism on intracellular concentrations of potassium and sodium, membrane potentials, permeability, active and passive ouabain-sensitive transport of potassium (determined with86Rb) was studied in neurons of the freshwater planorbis mollusk (Planorbarius corneus). X-ray microanalysis showed that incubation of isolated ganglia in oxygen-free medium induced no change in intracellular concentrations of potassium and sodium. In the presence of cyanide, absorption of oxygen by the ganglia ceased, but accumulation of86Rb decreased insignificantly. The membrane potential and permeability did not depend on addition of cyanide. Desoxyglucose, an inhibitor of glycolysis, decreased86Rb accumulation more than cyanide did. In the presence of inhibitors of both glycolysis and respiration, which excluded the possibility of mutual compensation of oxidation and glycolytic sources of energy supply,86Rb accumulation decreased to the highest degree. A hypothesis was formulated on the paramount importance of glycolytic ATP for maintaining ion homeostasis of the nerve cells. The problem of functionally facilitated compartmentation of intracellular energy sources is discussed.Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 313–321, May–June, 1991.  相似文献   

4.
Responses of descending interneurons of the thoracic nerve chain ofLocusta migratoria L. to wind stimulation of the head receptors concerned with the activation of the insect's flight were investigated by means of extracellular microelectrode recordings from their axons. Altogether 11 types of descending effects transmitted by these interneurons to neurons of the segmental ganglia were detected. Ipsilateral and contralateral wind stimulation of the receptors can not only activate hitherto silent interneurons but also effectively modify the character of discharges from spontaneously active, discharging neurons. This influence may be either excitatory (increased spontaneous firing rate) or inhibitory (decreased rate or total abolition of spontaneous discharges). Some descending interneurons give rise not only to on-responses but also to typical off-responses to stimulation. The possible functional role of some of the observed effects in the mechanisms triggering and maintaining the insect's flight is discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Biological Research Institute, Hungarian Academy of Sciences, Tihany. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 602–610, November–December, 1973.  相似文献   

5.
Experiments on the isolated ganglionic ring of the freshwater molluskPlanorbis corneus showed that more neurons (30%) in the ipsilateral mesocerebrum respond to stimulation of the left cerebral nerves than to stimulation of the opposite nerves (13%). A similar picture is observed for neurons of the right mesocerebrum, except that 11% of neurons respond to activation of the left cerebral nerves compared with 39% to stimulation of the ipsilateral right cerebral nerves. Ipsilateral connections of nerve of the visceral complex of ganglia are more clearly defined, as is exemplified by the left pallial nerve, during stimulation of which 68% of neurons in the ipsilateral mesocerebrum were activated, compared with 8% in the contralateral right mesocerebrum. Afferent fibers running in the visceral nerves cross at the level of the abdominal ganglion and not of the cerebral commissure, as might be expected from the structure of the ganglionic ring. The mesocerebral neurons themselves do not form synaptic connections between the mesocerebra, and excitation reaching one of them does not therefore induce any effects in the other.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 571–575, November–December, 1973.  相似文献   

6.
It was established during experiments on pedal ganglia generating locomotor rhythm isolated fromClione limacina, a pteropod mollusk, that this rhythm was irregular in 30% of preparations; i.e., the locomotor generator worked in bursts which alternated with periods of regular activity. Locomotor bursts were produced by excitation in command neurons located within the pedal ganglia. Single neurons were extracted from the ganglia in these preparations generating locomotor bursts by means of an intracellular microelectrode; their somata were then placed in their original sites amongst the ganglia cells. A total of 35 neurons were isolated showing changed activity during bursts. Nine of these cells renewed their erratic activity (linked to locomotor bursts) following reinsertion into the ganglion. Neurons which had initially shown an excitatory pattern during bursts continued to be excited; the same was true for inhibitory types. These observations indicate that the command neurons governing generator operation can act on target cells when morphological contact with them has been suppressed.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow; M. V. Lomonosov State University. Moscow. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 756–763, November–December, 1986.  相似文献   

7.
An electron-cytochemical study of the structure and topography of carbohydrate determinants of the surface membrane of CNS neurons of the edible snailHelix pomatia cultured in vitro was carried out by means of a set of colloidal goldlabeled lectins. An analysis of binding of lectins having different specificity to carbohydrate determinants shows the inhomogeneity of the carbohydrate pool of the membrane of the body of nerve cells having a different mediator nature. It was established that monoaminergic and peptidergic neurons equally bind lectins PNA, RCA, and WGA and do not demonstrate binding with PVA and LPA. Here HPA, a product of the albumen gland of the edible snailH. pomatia, marks only the membrane of peptidergic neurons. A conclusion is made about the absence of terminal residues of sialic acid on the membrane of many types of the snail neurons, which may be due to characteristics of its molecular structure. It is suggested also that the differences in the carbohydrate composition of the glycocalyx of different types of cells can serve as the basis for the formation of specific connections between different types of neurons of the developing brain.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 291–298, May–June, 1992.  相似文献   

8.
Location and numbers of neurons associated with sympathetic innervation of the heart within the right stellate and accessory cervical ganglia, the spinal cord, and spinal ganglia were investigated using horseradish peroxidase retrograde axonal transport techniques in cats. The enzyme was applied to central sections of the anastomosis of the stellate ganglion with the vagus nerve, the inferior cardiac nerve, and the vagosympathetic trunk caudal to the anastomosis. Labeled neurons within the stellate ganglion were located close to the point of departure of the nerves and more thinly distributed in the accessory cervical ganglion. A group of labeled cells was found in the anastomosis itself. Preganglionic neurons associated with sympathetic innervation of the heat were detected at segmental levels T1–T5 in the spinal cord. Labeled neurons were diffusely located in the spinal ganglia, concentrated mainly at levels T2–T4.Medical Institute, Ministry of Public Health of the RSFSR, Yaroslavl'. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 106–111, January–February, 1989.  相似文献   

9.
Functional characteristics of cerebral serotoninergic neuron Cl, axons of which terminate at the buccal ganglia [7], were investigated in the pteropod molluskClione. Stimulating neuron Cl induced activation of the feeding rhythm generator located in the buccal ganglia — an effect arising after a long latency and persisting for some tens of seconds once stimulation had ended. Neuron Cl receives feedback from buccal ganglion cells and this brings about periodic modulation in ganglia activity during the generation of feeding rhythm. Activity of neuron Cl is correlated with operation of the locomotor rhythm generator located in the pedal ganglia. The firing rate of Cl neurons increased upon activation of the locomotor generator (whether spontaneous or induced by stimulating certain command neurons). The correlation found between workings of the locomotor generator and activity of Cl neurons is thought to be one of the manifestations of feeding synergy involving simultaneous activation of the locomotor and buccal apparatus.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 18–25, January–February, 1991.  相似文献   

10.
Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.  相似文献   

11.
A biomathematical model of neuronal interaction, including real mollusk neurons and mathematical models of functioning of deficient synaptic connections between these neurons and synaptic endings of other neurons, was created on the basis of a computer and an experimental arrangement for investigating molluscan ganglia. The effect of the properties of a monosynaptic excitatory connection of the statistical characteristics of spike trains of interacting pacemaker neurons was investigated.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 413–420, July–August, 1980.  相似文献   

12.
A. Pakula 《Neurophysiology》1973,5(5):345-350
Rebound was recorded in the latent pacemaker neuron ofLimnaea stagnalis as an off-response to incoming pulses of constant duration (50 msec) and different strengths (0.17–16.1 nA) or of different duration (10 msec-360 sec) and constant strength (5 nA). To pulses of short duration and weak strength this response consists of a single depolarization wave. With an increase in these parameters the wave gradually grows and is followed by a hyperpolarization wave. At an intensity of 10–12 nA or duration of about 200 msec the rebound response becomes spike-shaped, but the spike is completely formed only at 15.2 nA or 4–5 sec. The last stage of its formation is characterized by "constriction" of the depolarization component. A further increase in pulse intensity of the same duration does not change the rebound response. On the other hand, with a further increase in pulse duration in the corresponding series of experiments fresh spikes were continually added to the first, and depending on the choice of durations, this process could be followed step by step. At a duration of about 190 sec the rebound response reached saturation when it consisted of 8 spikes with a total response duration of about 5 sec. These results are used as the basis for a hypothesis of the possible organization of excitation of the somatic membrane of mollusk pacemaker neurons. Some aspects of the possible mechanism of rebound formation are discussed.Institute of Physiology and Pathology of the Cardiovascular System, Kaunas Medical Institute, Kaunas, Lithuania. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 451–459, September–October, 1973.  相似文献   

13.
Concentration of monoamines and energy metabolism mechanisms was investigated in neurons of the stellate ganglion (SG) and ganglia of the thoracic sympathetic trunk Th6-Th10 (GTST) using histochemical techniques and computer analysis. Intensification of monoamine fluorescence and energy metabolism enzyme activity was found in SG neurons during both cold and emotional stress. Such changes were only observed during development of hypothermia in GTST. Selective neuronal activation is thought to take place in paravertebral ganglia under different types of stressful action.Institute of Physiology, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 22, No. 6, pp. 771–779, November–December, 1990.  相似文献   

14.
The heart of the pteropod molluskClione limacina is innervated by the median nerve arising from the left abdominal ganglion. Five neurons sending axons to the heart have been identified in theClione central nervous system with retrograde cobalt or Lucifer yellow staining. Neuron H1 located in the left pedal ganglion produced an excitatory effect on heart beat. Stimulation of three neurons, H2–H4, situated in a compact group in the medial region of the left abdominal ganglion, led to inhibition of cardiac contraction, while H5, located in the caudal region of the left abdominal ganglion, did not affect heart beat. The activity of efferent cardiac neurons (ECN) was found to be related to the operation of the locomotor rhythm generator. Spontaneous or reflex depression of the latter was found to inhibit neuron H1 and activate units H2–H4. The behavior of these ECN accounts for the positive correlation between heart operation and locomotor activity inClione limacina.Institute of Research on Information Transmission, Academy of Sciences of the USSR, Moscow, M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 185–192, March–April, 1989.  相似文献   

15.
The effects of noradrenaline and dopamine on heterosynaptic facilitation (HSF) were investigated during experiments on giant identified neurons from the cerebral ganglion of the freshwater molluskPlanorbis corneus. It was found that catecholamines, while inducing an increase in the amplitude of response obtained by iontophoretic application of acetylcholine, also sharply reduce the amplitude of EPSP occurring as a result of stimulating the cerebral nerve, although acetylcholine also acts as transmitter in this instance. Catecholamines were also found to exert a blocking action on synaptic transmission during the period of HSF. Noradrenaline washout immediately after blockade of HSF was shown to reinstate and promote continuing independent facilitation of synaptic transmission. Duration of this facilitatory after-effect frequently exceeded that of initial HSF. This would imply that if serotonin promotes development of HSF, then the secretion of noradrenaline and dopamine brought about by certain effects act as the mechanism controlling duration and intensity of HSF under naturally-occurring conditions of the mollusk and perhaps even human nervous system activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 224–232, March–April, 1989.  相似文献   

16.
The electrical activity of three identified bursting neurons (including one "plateau-generating" neuron) is studied in the brain ofHelix lucorum under conditions of complete isolation. A method for isolating the identified neurons is worked out (mechanical extraction by means of microelectrodes). All three neurons are shown to be endogenous oscillators. In the isolated state in the absence of any stimulation they exhibit spontaneous changes in activity: from an inactive state to nongrouped regular activity, from regular activity to burst activity, and vice versa. It is also found that the burst activity of all three isolated neurons can be regulated (initiated, discontinued, parameters altered) using the same neurochemical agents: serotonin, opioid enkephalins. Burst activity can be generated by the combined action of dopamine and enkephalin and discontinued just with dopamine. The possible significance of the described neurochemical mechanism of regulating burst activity in neurons that are endogenous oscillators is discussed with regard to the generation of the rhythm of various cyclic functions.N. K. Kol'tsov Institute of Developmental Biology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 472–480, July–August, 1991.  相似文献   

17.
Changes in membrane potential and conductance were studied in neurons of isolated sympathetic ganglia ofRana ridibunda during perfusion with cholinomimetics and cholinolytics. Activation of nicotinic (N) acetylcholine receptors by carbachol, suberyldicholine, and tetramethylammonium led to depolarization with an increase in conductance, whereas activation of muscarinic (M) acetylcholine receptors by perfusion with carbachol or 5-methylfurmethide, led to depolarization with a decrease or (less frequently) an increase in conductance. The M-cholinolytic atropine was shown to cause depolarization with an increase in conductance if perfusion with atropine was preceded by perfusion with carbachol.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 475–482, September–October, 1979.  相似文献   

18.
Electrical activity of identified and unidentified neurons ofHelix pomatia was recorded intracellularly after incubation of the ganglia for 0.5, 1, and 2 h in ribonuclease (RNAse) solution. Histochemical and cytophotometric analysis showed that after 30 min no RNA could be found in any of the neurons studied or in the glia and neuropil of the ganglia. At these times of incubation action potentials and spontaneous and evoked postsynaptic potentials could be recorded in all the neurons studied. The response to microapplication of acetylcholine to the neuron soma or to its direct electrical stimulation remained the same as in the control. In the identified neurons the addition of RNAse and its subsequent action did not alter their electrogenesis even after incubation for 2 h. It is concluded that electrogenesis is not directly dependent on the RNA content in the neuron. The primary role of RNA is considered to be participation in the synthesis of the specific proteins responsible for synaptic transmission.I. M. Sechenov Institute of Physiology, First Medical Institute, Moscow. Faculty of Psychology, Moscow State University, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 423–428, July–August, 1972.  相似文献   

19.
Analysis of postsynaptic unit responses in the visual center ofRana temporaria showed that optic nerve fibers with high and low conduction velocities usually converge on a single neuron of the tectum opticum (TO). In response to stimulation of the optic nerve a complex depolarization potential consisting of 3 (or possibly 4) EPSPs was recorded in one group of neurons; these EPSPs were probably generated through excitation of several groups of afferent fibers. Either an increase or a decrease in the EPSPs can be observed in the TO neurons in response to repetitive and paired stimulation of the optic nerve. Postsynaptic inhibitory responses of some TO neurons, probably of direct and recurrent origin, are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 637–643, November–December, 1971.  相似文献   

20.
Kononenko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):483-488
The ionic mechanisms of hyperpolarization produced by applying oxytocin (OT) were investigated at the membrane of identifiedHelix pomatia neurons. Two types of neuron were known to exist, in one of which hyperpolarization is produced by a reduction in chloride ions at the membrane and a rise in membrane permeability to potassium ions in the other. In the first of these, response to OT had a reversal potential of –40 mV and decreased when furosemide and tolbutamide were added to the external medium. In the second case, the potential of the reversal of the response to OT was –70 mV. Upon doubling of potassium ion concentration in the external solution it was shifted towards depolarization by 15 mV. It is sugested thatHelix pomatia neurons have different types of OT receptors, some of which, when activated, manifest reduced chloride permeability at the membrane (probably through the cell cyclase system) with a rise in potassium permeability at the membrane in others.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 659–666, September–October, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号