首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of lipoprotein fractions to provide cholesterol necessary for human lymphocyte proliferation was examined. When endogenous synthesis of cholesterol was blocked, proliferation of mitogen-stimulated normal human lymphocytes was markedly inhibited unless an exogenous source of sterol was supplied. All lipoprotein fractions with the exception of high density lipoprotein subclass 3 were able to provide cholesterol for lymphocyte proliferation. Each of the lipoprotein subfractions capable of providing cholesterol was also able to regulate endogenous sterol synthesis in cultured human lymphocytes. Provision of cholesterol by lipoproteins required the interaction of apolipoprotein B or apolipoprotein E with specific receptors on normal lymphocytes. Apolipoprotein modification by acetylation or methylation, which markedly reduced the ability to regulate sterol biosynthesis, also diminished the capacity of lipoproteins to provide cholesterol. In addition, depletion of apolipoprotein B- and apolipoprotein E-containing particles from high density lipoprotein decreased its ability to suppress cholesterol synthesis and prevented it from providing cholesterol to proliferating lymphocytes. Monoclonal antibodies directed against the receptor-recognition sites on apolipoprotein B and apolipoprotein E were used to define the specific apolipoproteins required for the provision of cholesterol to lymphocytes by the various lipoprotein fractions. The antibody to apolipoprotein B inhibited cholesterol provision by both low density lipoprotein (LDL) and other lipoprotein fractions. The antibody to apolipoprotein E did not decrease provision of cholesterol by LDL but did inhibit the capacity of other fractions to provide cholesterol. In addition, a monoclonal antibody against the ligand binding site on the LDL receptor inhibited provision of cholesterol to normal lymphocytes by all lipoproteins. Finally, lymphocytes lacking LDL receptors were unable to obtain cholesterol from any lipoprotein fraction. These studies demonstrate that LDL receptor-mediated interaction with apolipoprotein B or apolipoprotein E is essential for the provision of cholesterol to normal human lymphocytes from all lipoprotein sources.  相似文献   

2.
Apolipoprotein B transports cholesterol in plasma as low density lipoprotein (LDL) and targets its delivery to cells by binding to a specific plasma membrane receptor. The cellular consequences of apoB binding to its receptor were investigated to determine whether it suppresses cholesterol biosynthesis and reduces the number of cellular receptors for the apoprotein. Upon preincubation of fibroblasts with lipoprotein-deficient medium alone or supplemented with either LDL or apoB complexed to BSA (apoB-BSA), LDL suppressed cholesterol biosynthesis, but apoB enhanced it. Similarly, fibroblasts preincubated in medium supplemented with LDL bound decreased amounts of either (125)I-labeled LDL or (125)I-labeled apoB-BSA to their receptors, while preincubation with apoB-BSA increased the binding relative to the controls. These latter results occurred in association with a decrease in cellular cholesterol content, indicating that apoB in the medium bound cholesterol and removed it from the cells, thus stimulating both cholesterol synthesis and cellular binding of apoB. Accordingly, fibroblast cholesterol synthesis and the number of functional LDL receptors are not suppressed by the binding of the apoprotein to the receptor, and the known role of apoB remains that of transporting cholesterol in plasma and delivering it to the cell. A possible physiologic role for apoB in depleting cells of cholesterol is presently unknown since apoB is not known to exist free in plasma; however, these findings demonstrate such a functional capability for this apoprotein.-Shireman, R. B., and W. R. Fisher. Apolipoprotein B: its role in the control of fibroblast cholesterol biosynthesis and in the regulation of its own binding to cellular receptors.  相似文献   

3.
Leukemic guinea pig lymphocytes (L2C) have ten times as many low-density lipoprotein (LDL) receptors as healthy lymphocytes, but LDL accounts for only 38% of the cholesterol in L2C cells, compared to more than 95% in normal cells. Our data show that LDL fails to regulate cholesterol biosynthesis and that there is a defect in LDL internalization and receptor turnover in L2C cells. We also demonstrate that the degradation of LDL is not a limiting process. By discriminating between binding and internalization, we show that internalization in L2C is much slower than in normal cells and that the decrease in metabolism is related to the slow turnover of the LDL receptors.  相似文献   

4.
5.
N,N-dipentadecylaminostyrylpyridinium iodide is a dye that is approximately 100-fold more intensely fluorescent in a lipid than aqueous environment. This observation suggests its potential as a fluorescence stain for lipoproteins. This work reports the staining of LDL with this dye for use in studies of cellular binding. The staining procedure is simple, resulting in stable attachment of the dye as determined by transfer experiments, physical properties essentially identical to native LDL as demonstrated by virtually identical electrophoretic mobility, and consistent results in studies of cellular binding using flow cytometry. Increased signal to noise ratio over other dyes used for lipoprotein staining including the widely used Dil (3,3'-dioctadecylindocarbocyanine iodide) allows determinations of greater sensitivity and precision to be made. This is demonstrated by the flow cytometric determination of the 4 degrees C binding curve of LDL with freshly isolated human peripheral blood lymphocytes (i.e., cells not LDL receptor upregulated). Mediation of binding by the LDL receptor is demonstrated by correspondence between the LDL receptor dissociation constant derived from this work and literature values; increased specific binding in lymphocytes cultured in lipoprotein-deficient media to up-regulate the LDL receptor; and decreased specific binding in lymphocytes cultured in the presence of 25-hydroxy cholesterol for 48 h to suppress the LDL receptor.  相似文献   

6.
Diet-induced hypercholesterolemia in non-human primates results in the production of a low-density lipoprotein (LDL) of abnormal size and composition. This LDL from hypercholesterolemic monkeys has been shown to be more atherogenic than the same amount of LDL from normocholesterolemic animals. Previous studies have demonstrated that hypercholesterolemic LDL is approximately twice as effective as normal LDL in stimulating cholesterol accumulation and esterification in arterial smooth muscle cells in culture. The purpose of the present study was determine whether this effect was secondary to differences in metabolism of the normal and hypercholesterolemic LDL. for this, the metabolism of 125I-labeled normal and hypercholesterolemic LDL from rhesus and cynomolgus monkeys was compared in several lines of skin fibroblasts and smooth muscle cells. Both normal and hypercholesterolemic LDL bound with high affinity to the same cell surface receptor. However, the affinity for binding of hypercholesterolemic LDL was about twice that of normal LDL (apparent dissociation constant for binding, Kd, was 2.63 micrograms protein/ml and 4.35 micrograms protein/ml, respectively). Conversely, only about 50% as many particles of hypercholesterolemic were able to bind to the receptor, compared with normal LDL. Those cells with the greatest capacity to metabolize LD generally accumulated the most cholesterol with either hypercholesterolemic or normal LDL. In all cell lines, nearly twice as much cholesterol accumulated in cells incubated with hypercholesterolemic LDL compared with normal LDL, and this differential could not be explained by differences in metabolism of the two lipoproteins, suggesting that some cholesterol entered the cells independent of the uptake of the intact LDL molecule. LDL receptors appear necessary for this to occur, since no difference in cholesterol accumulation was observed in cells genetically deficient in LDL receptors.  相似文献   

7.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

8.
Non-dividing human lymphocytes were transformed upon infection with the Epstein-Barr virus (EBV) into lymphoblasts which are capable of continuous growth in culture. We studied the properties of the LDL receptor in EBV-transformed human lymphocytes (EBV-L) by binding experiments and by ligand blotting. EBV-L show a high affinity binding of LDL in the same order of magnitude as found with fibroblasts; EBV-L obtained from a homozygous familial hypercholesterolemic (FH) patient fail to express LDL receptor activity. Similar to that of fibroblasts, the LDL receptor activity in EBV-L is Ca2(+)-dependent and is down-regulated by the presence of an exogenous source of cholesterol in the medium. The LDL receptor protein of EBV-L has an apparent molecular weight of 130,000. Since our results show that EBV-L display a LDL receptor protein similar to the LDL receptor present in fibroblasts, we conclude that in comparison with other cell types the EBV-L offer a suitable model system to investigate LDL receptor protein abnormalities in FH patients.  相似文献   

9.
The relationship between cholesterol synthesis and uptake in proliferating lymphocytes has been examined. [14C]Acetate incorporation into lymphocytes cultured under lipoprotein-deficient conditions increased initially in response to mitogen, decreased after 24 h, and increased rapidly between 72 and 96 h. Addition of LDL (10 micrograms/ml) to the culture during the 'trough' period caused [14C]acetate incorporation to return rapidly to baseline, while at peak periods LDL suppression of cholesterol synthesis was minimal. Lymphocytes cultured in the presence of the HMG-CoA reductase inhibitor, mevinolin, exhibited a time-dependent increase in their capacity to incorporate [14C]acetate into cholesterol, evident when mevinolin was removed by washing prior to assay. PHA enhanced 125I-labelled LDL receptor-mediated binding by lymphocytes cultured in lipoprotein-deficient medium over a 4 day period and mevinolin augmented the effect. [3H]Thymidine incorporation into mitogen-stimulated lipoprotein-deficient cultures was inhibited up to 75% by mevinolin (1 mumol/l). LDL (2.5-10 micrograms/ml) substantially reversed this inhibition in 72 h cultures, but only partially overcame inhibition in cells cultured for 96 h. Results suggest that endogenous cholesterol synthesis may be obligatory for lymphocyte proliferation after the initial round of cell division.  相似文献   

10.
Binding of human lipoproteins to cultured mouse Ob17 preadipose and adipose cells was studied, using labeled VLDL, LDL and apoprotein E-free HDL. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 6.4, 31 and 24 micrograms/ml for VLDL, LDL and apoprotein E-free HDL, whereas the maximal numbers of binding sites per cell were 4.2 X 10(4), 1.5 X 10(4) and 2.5 X 10(5). The binding of 125I-LDL was competitively inhibited by LDL greater than VLDL greater than total HDL; human LDL and mouse LDL were equipotent in competition assays. Methylated LDL and apoprotein E-free HDL were not competitors. In contrast, the binding of 125I-apoprotein E-free HDL was competitively inhibited by apoprotein E-free HDL greater than total HDL and the binding of 125I-HDL3 by mouse HDL. Thus, mouse adipose cells possess distinct apoprotein B, E and apoprotein E-free HDL binding sites which can recognize heterologous or homologous lipoproteins. The cell surface receptor of LDL in mouse preadipose cells shows similarities with that described for human fibroblasts, since: (1) the LDL binding initiated the process of internalization and degradation of the apoprotein B and apoprotein E-containing lipoproteins; (2) receptor-mediated uptake of cholesterol LDL led to a parallel but incomplete decrease in the [14C]acetate incorporation into cholesterol and in the activity of HMG-CoA reductase. Growing (undifferentiated) or growth-arrested cells (differentiated or not) showed no significant changes in the Kd values for lipoprotein binding. In contrast, the maximal number of binding sites correlated with the proliferative state of the cells and was independent of cell differentiation. The results are discussed with respect to cholesterol accumulation in adipose cells.  相似文献   

11.
The determination of the LDL receptor binding capacity of human blood lymphocytes was assessed by indirect immunocytofluorimetric assay. To produce the maximal synthesis of the LDL receptor, the cholesterol efflux was enhanced by incubation of lymphocytes with HDL3 subfractions. The binding capacity of the LDL receptor was measured by incubation at 4 degrees C either with LDL and rabbit anti-LDL immunoglobulins or with peptide receptor antibody (ARP-Ig) raised against the NH2-terminal sequence of the LDL receptor. Thereafter complexes were incubated with fluorescein-labelled anti-rabbit immunoglobulin (FITC-Ig). Fluorescence flow cytometry was used to quantify the number of fluorescent lymphocytes and results were expressed as the percentage of lymphocytes with a fluorescent intensity above the threshold. Using preimmune rabbit immunoglobulin and then FITC-Ig, only 5-10% of cells were fluorescent. Neither LDL nor ARP-Ig could bind to homozygous familial hypercholesterolemia (FH) lymphocytes. Normal lymphocytes preincubated with HDL3 could bind LDL or ARP-Ig, the number of fluorescent cells being 59 and 39.2% respectively. Subjects with confirmed or suspected heterozygous FH demonstrated cell fluorescence at about half the normal level.  相似文献   

12.
Secretory products of freshly isolated human circulating blood cells such as platelets, monocytes, and B lymphocytes, but not T lymphocytes, have previously been shown to enhance low density lipoprotein (LDL) metabolism by arterial wall cells. This study was undertaken to evaluate how secretory factor(s) from mononuclear cells that had been stimulated by concanavalin A (Con A) alters LDL receptor activity by cultured human skin fibroblasts. Conditioned medium from Con A-stimulated mononuclear cells produced an increase of 125I-LDL degradation accompanied by increased thymidine incorporation into DNA. The effect of conditioned medium from the Con A-stimulated mononuclear cells was mediated by the LDL receptor pathway. Degradation of HDL and methylated LDL, neither of which is taken up by the classical LDL receptor pathway, was not affected. The conditioned medium from these Con A-stimulated cells also failed to stimulate fluid pinocytosis, as measured by the uptake of [14C]sucrose. Some strains of fibroblasts, deficient in LDL receptors, responded to the conditioned medium from the Con A-stimulated mononuclear cells by increasing the very small amounts of LDL degraded by these cells. Fibroblasts from other homozygous familial hypercholesterolemic cell strains were unresponsive, however. The effect on LDL receptors was characterized by an increase in LDL receptor number without a change in the affinity of LDL for its receptor. Thus stimulated mononuclear cells secrete mitogens that also stimulate LDL receptor activity in human skin fibroblasts.  相似文献   

13.
Binding of plasma low density lipoproteins to erythrocytes   总被引:2,自引:0,他引:2  
Low density lipoproteins (LDL) containing apolipoprotein B bind to intact, freshly isolated erythrocytes. The LDL-erythrocyte interaction is of low affinity, with a Kd of 1.1 x 10(-6) M. Binding is noncooperative. There are about 200 binding sites per cell and, within the limits of experimental uncertainty, these sites comprise a homogeneous class. Binding of LDL is a temperature-independent process. The maximum amount of LDL blood increases following proteolytic digestion of the cells with trypsin or chymotrypsin. The specificity of the binding sites for LDL is not absolute: high density lipoproteins and lipid vesicles composed of phosphatidylcholine or phosphatidylcholine/cholesterol (equimolar) complete with LDL for occupancy of 60% of the binding sites. Modification of 5--6 of the 9 apolipoprotein B arginine residues with 1,2-cyclohexanedione/borate or of 10--15 of the 20 lysine residues by reductive methylation does not alter the ability of LDL to bind to erythrocytes. Native LDL and methylated-LDL alter erythrocyte morphology. However, LDL in which the arginine residues are derivatized with 1,2-cyclohexanedione/borate do not induce the discocyte leads to echinocyte transformation. Chemically modified and native LDL exchange cholesterol with erythrocytes at equal rates and to nearly equal extents. Taken together, the data suggest that the binding sites for LDL on the erythrocyte membrane are distinct from the LDL receptors at the surface of other cells--e.g., fibroblasts and lymphocytes--which do not bind HDL and which do not recognize LDL with derivatized arginine or lysine residues. It is proposed that the biological function of the erythrocyte binding sites is to mediate the exchange of cholesterol between the cell membrane and lipoproteins.  相似文献   

14.
Kallikrein digestion of human low density lipoproteins (LDL) has recently been shown to result in the degradation of apolipoprotein B (apo-B) into four major fragments, two of them being B-26 and B-74, which have been reported to be present in the LDL of some individuals. We studied the binding of kallikrein-treated LDL to human fibroblasts; digestion did not affect binding. Digested LDL was not taken up by macrophages, showing that it behaved like normal LDL. The activation of acyl-CoA cholesterol acyltransferase by LDL in fibroblasts was also not altered by kallikrein digestion. When delipidated LDL was treated with kallikrein, apo-B was digested into very small fragments, indicating that kallikrein can cleave apo-B at sites other than those which result in the formation of B-26 and B-74. The partial delipidation of LDL with heptane also resulted in more extensive digestion of apo-B, although binding to cells was unaffected. These studies suggest that the cholesterol core maintains the proper orientation of apo-B in the LDL particle and that kallikrein may be used as a tool to elucidate the association of apo-B and lipids in the LDL particle.  相似文献   

15.
The Niemann‐Pick C1 and C2 (NPC1 and NPC2) proteins have a central role in regulating the transport of lipoprotein‐derived cholesterol from endocytic compartments to the endoplasmic reticulum for esterification by acyl‐CoA:cholesterol acyltransferase (ACAT) and feedback inhibition of the sterol regulatory element‐binding protein (SREBP) pathway. Since the NPC1 gene/protein has recently been shown to be downregulated by feedback inhibition of the SREBP pathway, the present study was performed to determine whether physiological downregulation of the NPC1 gene/protein alters the transport and metabolism of low‐density lipoprotein (LDL)‐derived cholesterol in human fibroblasts. To perform this study, three different culture conditions were used that included fibroblasts grown in lipoprotein‐deficient serum (LPDS), LPDS supplemented with LDL, and LPDS supplemented with LDL, followed by equilibration in the absence of LDL to allow the transport of LDL‐derived cholesterol from endocytic compartments and equilibration of cellular sterol pools. The results from this study indicated that in addition to the NPC1 gene/protein, the NPC2 gene/protein was also downregulated by LDL‐derived cholesterol‐dependent feedback inhibition and that downregulation of both the NPC1 and NPC2 genes/proteins was associated with the sequestration of LDL‐derived cholesterol within endocytic compartments, including late endosomes/lysosomes after equilibration. Therefore, it is proposed that physiological and coordinate downregulation of the NPC1 and NPC2 genes/proteins promotes the sequestration of LDL‐derived cholesterol within endocytic compartments and serves a role in maintaining intracellular cholesterol homeostasis. J. Cell. Biochem. 108: 1102–1116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
We studied the mechanism of uptake and metabolism of exogenous phospholipids in mouse peritoneal macrophages using vesicles composed of various phospholipids and cholesterol. Macrophages in culture were found to actively incorporate and metabolize phosphatidylcholine/cholesterol vesicles containing small amounts of acidic phospholipids such as phosphatidylserine, phosphatidylinositol, or phosphatidic acid and to store the fatty acyl chains and cholesterol in triacylglycerol and cholesteryl ester form in their cytosol. These cells exhibited massive amounts of oil red O-positive lipid droplets, a typical feature of foam cells. The metabolism of exogenous phospholipid vesicles was completely inhibited by chloroquine and cytochalasin B, suggesting that vesicle uptake occurs by endocytosis. A similar type of metabolism was observed in guinea pig peritoneal macrophages, macrophage cell line J774.1, but not in Swiss 3T3 fibroblasts. Competition studies using various ligands for the scavenger receptor showed that acetylated low density lipoprotein (acetyl-LDL), dextran sulfate, or fucoidan was able to compete for up to 60% of the binding of phosphatidylserine-containing vesicles, and that copper-oxidized LDL (oxidized LDL) competed for more than 90% of the vesicle binding. On the other hand, phosphatidylserine-containing vesicles was able to compete for more than 90% of the binding of acetyl-LDL. These results indicate that acidic phospholipids are recognized by the scavenger receptors on the surface of macrophages and that more than one scavenger receptor exists on mouse peritoneal macrophages, i.e. one capable of recognizing acetyl-LDL, oxidized LDL, and an array of acidic phospholipids on membranes, and the other recognizing both acidic phospholipids and oxidized LDL but not acetyl-LDL.  相似文献   

17.
本文研究了实验性高胆固醇血症大鼠肝脏低密度脂蛋白受体(LDLR)活性变化及有氧运动时LDLR活性调节的影响。发现,高脂(HC)组肝组织匀浆LDLR活性较正常对照(NC)组降低37%(P<0.05),同时血清总胆固醇(TC)、低密度脂蛋白胆固醇(LDLC)及血清载脂蛋白B(ApoB)均显著高于NC组(P<0.01);高脂+运动(HE)组TC、LDLC及ApoB均明显低于HC组,而LDLR活性则较HC组增高26%(P<0.05)。结果提示:(1)高胆固醇负荷时细胞可通过下行调节影响LDLR活性;(2)运动可能通过增加对细胞内胆固醇利用和降解,反馈作用于下行调节过程影响LDLR的合成,增加对LDLC摄取而显著改善血脂水平。  相似文献   

18.
The ability of cultured human arterial smooth muscle cells to regulate low density lipoprotein (LDL) receptor activity was tested. In contrast to human skin fibroblasts incubated with lipoprotein deficient medium under identical conditions, smooth muscle cells showed significantly reduced enhancement of 125I-labeled LDL and 125I-labeled VLDL (very low density lipoprotein) binding. Smooth muscle cells also failed to suppress LDL receptor activity during incubation with either LDL or cholesterol added to the medium, while fibroblasts shoed an active regulatory response. Thus, in comparison with the brisk LDL receptor regulation characteristic of skin fibroblasts, arterial smooth muscle cells have and attenuated capacity to regulate their LDL receptor activity. These results may be relevant to the propensity of these cells to accumulate LDL and cholesterol and form "foam cells" in the arterial wall in vivo, a process associated with atherogenesis.  相似文献   

19.
Lipid metabolism in a concanavalin A-resistant, glycosylation-defective mutant cell line was investigated by comparing growth properties, lipid composition, and lipid biosynthesis in wild-type (WT), mutant (CR-7), and revertant (RCR-7) cells. In contrast to WT and RCR-7, the mutant was auxotrophic for cholesterol, but mevalonolactone did not restore growth on lipoprotein-deficient medium. The use of R-[2-14C]mevalonolactone revealed that CR-7 was deficient in the conversion of lanosterol to cholesterol. Total lipid and phospholipid content and composition were similar in all three cell lines, but CR-7 displayed subnormal content and biosynthesis of cholesterol and unsaturated fatty acids. The mutant was hypersensitive to compactin and was unable to upregulate either 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity or the binding and internalization of 125I-labeled low-density lipoprotein (LDL) in response to lipoprotein deprivation. HMG-CoA reductase activity in all three cell lines showed similar kinetics and phosphorylation status, and the binding kinetics and degradation of 125I-LDL were also similar, suggesting that CR-7 possesses kinetically normal reductase and LDL binding sites, but is deficient in their coordinate regulation. Tunicamycin (1-2 micrograms/ml) strongly and reversibly suppressed reductase activity in WT and RCR-7. CR-7 was resistant to this inhibitor. In WT cells this suppressive effect was accompanied by inhibition of 3H-labeled mannose incorporation into cellular protein, but 3H-labeled leucine incorporation was unaffected. Immunotitration of HMG-CoA reductase activity in extracts of WT cells, cultured in the presence and absence of tunicamycin, showed that suppression of reductase activity reflected the presence of reduced amounts of reductase protein, implying that glycosylation plays an important role in the coordinate regulation of HMG-CoA reductase activity and LDL binding.  相似文献   

20.
S Benvenga  J Robbins 《Biochimie》1999,81(5):545-548
Lipoproteins, especially HDL, are carriers of a small fraction of the thyroid hormones in plasma and participate in the intracellular transport of T4. In previous work we showed that a brief period of hypothyroidism alters the hormone distribution among the lipoproteins, causing a decrease in VLDL and LDL binding despite a relative increase in VLDL and LDL cholesterol, an increase in HDL binding, and a reversal of T4 and T3 binding to the smallest HDL size subgroup. The present study of three patients with thyroid hormone resistance and largely compensated hypothyroidism showed thyroid hormone distribution that differed markedly from both normal and hypothyroid subjects. The most striking difference was a much lower binding of both T4 and T3 to HDL and a much higher binding to LDL. If confirmed in a larger group of patients, this might serve as a marker for thyroid hormone resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号