首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li W  Liu G  Tan H 《Biotechnology letters》2003,25(18):1491-1497
The gene, sabR, encoding a receptor for -butyrolactone, was cloned from the genomic DNA of Streptomyces ansochromogenes 7100. Its deduced protein shows strong homology to several -butyrolactone-binding proteins in Streptomyces. Disruption of sabR retarded nikkomycin production in liquid media containing glucose or glycerol as carbon source. Sporulation of sabR disruption mutants was earlier than the parent strain on solid media with glucose or glycerol as carbon source. However, disruption of sabR had no effect on either nikkomycin production or sporulation on media containing mannitol as carbon source, suggesting that sabR is a pleiotropic regulatory gene that controls the onset of nikkomycin production and sporulation in S. ansochromogenes and is related to the utilization of carbon source.  相似文献   

2.
Several genetically stable mutants blocked in nikkomycin biosynthesis were obtained after the slightly germinated spores of Streptomyces ansochromogenes, a nikkomycin producer, were treated with ultra violet radiation. One of the mutants is the same in morpholotical differentiation as the wild type strain and is designated as NBB19. A DMA library was constructed using plasmid plJ702 as cloning vector, NBB19 as cloning recipient. A 6 kb DNA fragment which can genetically complement NBB19 was cloned when screening the library for antifungal activity. Sequence analysis showed that the 3 kb Bgl II-Sal I fragment contains one complete ORF (ORF1) and one partial ORF (ORF2). ORF1 is designated as sanA. sanA is 1 365 bp, encoding a protein consisting of 454 amino acid residues. Database searching indicated that sanA is homologous to the hypothetical methyltransferase in Pyrococcus horikoshli with 25% identities and 41% positives. Disruptant of sanA lost the ability to synthesize nikkomycin. It indicated that sa  相似文献   

3.
4.
Nikkomycins are a group of peptidyl nucleoside antibiotics with potent fungicidal, insecticidal, and acaricidal activities. sanN was cloned from the partial genomic library of Streptomyces ansochromogenes 7100. Gene disruption and complementation analysis demonstrated that sanN is essential for nikkomycin biosynthesis in S. ansochromogenes. Primer extension assay indicated that sanN is transcribed from two promoters (sanN-P1 and sanN-P2), and sanN-P2 plays a more important role in nikkomycin biosynthesis. Purified recombinant SanN acts as a dehydrogenase to convert benzoate-CoA to benzaldehyde in a random-order mechanism in vitro, with respective Kcat/Km values of 3.8 mM-1s-1 and 12.0 mM-1s-1 toward benzoate-CoA and NADH, suggesting that SanN catalyzes the formation of picolinaldehyde during biosynthesis of nikkomycin X and Z components in the wild-type stain. These data would facilitate us to understand the biosynthetic pathway of nikkomycins and to consider the combinatorial synthesis of novel antibiotic derivatives.  相似文献   

5.
Methionine (Met) plays an important role in various cellular processes in both eukaryotes and prokaryotes. Cystathionine gamma-synthase encoded by STR2 gene is a key enzyme in Met biosynthesis in Saccharomyces cerevisiae. In this study, we identified FgMETB, a homologue of S. cerevisiae STR2, from Fusarium graminearum using the Protein Basic Local Alignment Search Tool (BLASTP) program. The FgMETB deletion mutants were unable to grow on fructose gelatin agar (FGA) medium containing SO42 as sole sulphur source. In addition, more than 90 % conidia of the mutants were not able to germinate in 2 % sucrose solution within 6 or 12 h of incubation. Supplementation of 1 mM Met or 0.5 mg ml−1 homocysteine, but not 1 mM cysteine or 0.5 mg ml−1 glutathione, rescued the defect of mycelial growth and spore germination of FgMETB deletion mutants. These results indicated that the enzyme encoded by FgMETB is involved in conversion of cysteine into homocysteine. Inoculation tests showed that the FgMETB deletion mutant exhibited decreased virulence significantly on wheat heads, which is consistent with a low level of deoxynivalenol (DON) production of the mutant in wheat kernels. Fungicide sensitivity assays revealed FgMETB deletion mutants showed increased sensitivity to the sterol demethylation inhibitor tebuconazole, but did not change their sensitivities to other fungicides. Taken together, results of this study indicated that FgMETB plays a critical role in the regulation of various cellular processes in F. graminearum.  相似文献   

6.
采用常规转化方法用来自天蓝色链霉菌J1 5 0 1的质粒pUC1 1 6 9(pMT6 6 0∷Tn45 5 6∷vph)多次转化尼可霉素产生菌圈卷产色链霉菌野生型 71 0 0的原生质体 ,均未得到转化子。采用限制性热衰减法于 5 0℃ ,3 0min溶菌制备 71 0 0的原生质体 ,获得了转化子 ,但转化频率极低 ,只有 0 4个转化子 μgDNA。用来自 71 0 0的pUC1 1 6 9再转化不含pUC1 1 6 9的 71 0 0原生质体 ,转化频率提高 1 0 3 ~ 1 0 4 倍。于 3 9℃ ,MM Vio条件下培养携带有pUC1 1 6 9的 71 0 0孢子 ,Tn45 6 0发生转座 ,筛选到 40 6 8个转座菌落 ,并从中得到 8株尼可霉素阻断突变株 ;对这 8株突变株的总DNA进行Southern杂交分析表明 ,Tn45 6 0至少在 4个不同的位点插入到 71 0 0的染色体上。用实验室已获得的与尼可霉素生物合成有关的 3 0kbDNA片段为探针和经不同酶切的 8株突变株的总DNA进行Southern杂交 ,结果表明 ,除阻断突变株Nik5有杂交信号且杂交信号大小均同野生型…  相似文献   

7.
The life cycle of Streptomyces involves the formation of filamentous substrate and aerial hyphae. Following cessation of growth of an aerial hypha, multiple septation occurs at the tip to produce a chain of unigenomic spores. A gene, shyA, which influences several aspects of this growth, was isolated and partially characterized in Streptomyces coelicolor. The gene product is a representative of a well-conserved family of small actinomycete proteins. The shyA mutant sporulates normally but displays hyper septum formation and altered spore-chain morphology. Biochemical separation experiments and immunofluorescence staining demonstrated that the shyA gene product locates at cell membranes. Moreover, yeast two-hybrid screen and GST-pull-down assay showed that ShyA can interact with itself. Altogether, ShyA belongs to a new family of membrane-associated proteins which plays a role in morphological differentiation in actinomycetes.  相似文献   

8.
【目的】圈卷产色链霉菌全局性调控基因wblA阻断突变后,尼可霉素不再产生。RNA-seq和转录分析表明san7324基因在野生型菌株中可以正常转录,而在wblA阻断突变株(ΔwblA)中不能转录,为此本文旨在揭示san7324与尼可霉素产生的关系。【方法】利用同源双交换策略对san7324进行基因阻断,而后通过基因遗传回补及对尼可霉素生物合成相关基因的转录分析等方法研究san7324的功能。【结果】在相同培养条件下,阻断突变株Δsan7324与野生型菌株相比失去了合成尼可霉素的能力。我们通过同源比对发现圈卷产色链霉菌中还存在一个与san7324同源的基因san7324L,该基因的阻断导致尼可霉素产量降低。当san7324和san7324L两个基因同时被阻断后,得到的突变株Δsan7324-san7324L生长稀疏而且不能正常发育分化形成灰色表型的孢子或孢子链,只能形成白色表型的气生菌丝,同时也丧失了合成尼可霉素的能力。当这两个基因(san7324-san7324L)回补双突变株后,则恢复了野生型的表型(能形成孢子链并恢复尼可霉素的产生)。进一步的研究初步表明san7324和san7324L的阻断主要影响了尼可霉素生物合成基因簇中途径特异性调控基因sanG的转录水平,从而影响圈卷产色链霉菌的发育分化和尼可霉素的产生。【结论】该结果为链霉菌形态分化与生理代谢关系的研究提供了更多的证据,同时为多效调控基因wblA作用机制的阐明奠定了基础。  相似文献   

9.
Several genetically stable mutants blocked in nikkomycin biosynthesis were obtained after the slightly germinated spores ofStreptomyces ansochromogenes, a nikkomycin producer, were treated with ultra violet radiation. One of the mutants is the same in morpholotical differentiation as the wild type strain and is designated as NBB19. A DNA library was constructed using plasmid pIJ702 as cloning vector, NBB19 as cloning recipient. A 6 kb DNA fragment which can genetically complement NBB19 was cloned when screening the library for antifungal activity. Sequence analysis showed that the 3 kbBgl II -Sal I fragment contains one complete ORF (ORF1) and one partial ORF (ORF2). ORF1 is designated assanA. sanA is 1 365 bp, encoding a protein consisting of 454 amino acid residues. Database searching indicated thatsanA is homologous to the hypothetical methyltransferase inPyrococcus horikoshii with 25% identities and 41% positives. Disruptant ofsanA lost the ability to synthesize nikkomycin. It indicated thatsanA is a novel gene which is essential for nikkomycin biosynthesis.  相似文献   

10.
Gene clusters for the biosynthesis of kanamycin (Km) and gentamicin (Gm) were isolated from the genomic libraries of Streptomyces kanamyceticus and Micromonospora echinospora, respectively. The sequencing of the 47 kb-region of S. kanamyceticus genomic DNA revealed 40 putative open reading frames (ORFs) encoding Km biosynthetic proteins, regulatory proteins, and resistance and transport proteins. Similarly, the sequencing of 32.6 kb genomic DNA of M. echinospora revealed a Gm biosynthetic gene cluster flanked by resistant genes. Biosynthetic pathways for the formation of Km were proposed by the comparative study of biosynthetic genes. Out of 12 putative Km biosynthetic genes, kanA was expressed in Escherichia coli and determined its function as a 2-deoxy-scyllo-inosose synthase. Furthermore, the acetylations of aminoglycoside-aminocyclitols (AmAcs) by Km acetyltransferase (KanM) were also demonstrated. The acetylated derivatives completely lost their antibacterial activities against Bacillus subtilis. The comparative genetic studies of Gm, Km, tobramycin (Tm), and butirosin (Bn) reveal their similar biosynthetic routes and provide a framework for the further biosynthetic studies.  相似文献   

11.
In higher organisms, mononucleated myoblasts fuse to form multinucleated myotubes. During this process, myoblasts undergo specific changes in cell morphology and cytoarchitecture. Previously, we have shown that the actin regulator Kette (Hem-2/Nap-1) is essential for myoblast fusion. In this study, we describe the role of the evolutionary conserved Wiskott-Aldrich syndrome protein that serves as a regulator for the Arp2/3 complex for myoblast fusion. By screening an EMS mutagenesis collection, we discovered a new wasp allele that does not complete fusion during myogenesis. Interestingly, this new wasp3D3-035 allele is characterized by a disruption of fusion after precursor formation. The molecular lesion in this wasp allele leads to a stop codon preventing translation of the CA domain. Usually, the WASP protein exerts its function through the Arp2/3-interacting CA domain. Accordingly, a waspDeltaCA that is expressed in a wild-type background acts as dominant-negative during the fusion process. Furthermore, we show that the myoblast fusion phenotype of kette mutant embryos can be suppressed by reducing the gene dose of wasp3D3-035. Thus, Kette antagonizes WASP function during myoblast fusion.  相似文献   

12.
Expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into Streptomyces venezuelae YJ003 mutant strain bearing a deletion of a desosamine biosynthetic (des) gene cluster. The resulting recombinants produced macrolide antibiotic YC-17 analogs possessing unnatural sugars replacing native d-desosamine. These metabolites were isolated and further purified using chromatographic techniques and their structures were determined as d-quinovosyl-10-deoxymethynolide, l-rhamnosyl-10-deoxymethynolide, l-olivosyl-10-deoxymethynolide, and d-boivinosyl-10-deoxymethynolide on the basis of 1D and 2D NMR and MS analyses and the stereochemistry of sugars was confirmed using coupling constant values and NOE correlations. Their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with l-rhamnose displayed better antibacterial activity than parent compound YC-17 containing native sugar d-desosamine. The present study on relationships between chemical structures and antibacterial activities could be useful in generation of novel advanced antibiotics utilizing combinatorial biosynthesis approach.  相似文献   

13.
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. Cubicin (daptomycin-for-injection) was approved in 2003 by the FDA to treat skin and skin structure infections caused by Gram-positive pathogens. Daptomycin is particularly significant in that it represents the first new natural product antibacterial structural class approved for clinical use in three decades. The daptomycin gene cluster contains three very large genes (dptA, dptBC, and dptD) that encode the nonribosomal peptide synthetase (NRPS). The related cyclic lipopeptide A54145 has four NRPS genes (lptA, lptB, lptC, and lptD), and calcium dependent antibiotic (CDA) has three (cdaPS1, cdaPS2, and cdaPS3). Mutants of S. roseosporus containing deletions of one or more of the NRPS genes have been trans-complemented with dptA, dptBC, and dptD by inserting these genes under the control of the ermEp* promoter into separate conjugal cloning vectors containing phiC31 or IS117 attachment (attP int) sites; delivering the plasmids into S. roseosporus by conjugation from Escherichia coli; and inserting the plasmids site-specifically into the chromosome at the corresponding attB sites. This trans-complementation system was used to generate subunit exchanges with lptD and cdaPS3 and the recombinants produced novel hybrid molecules. Module exchanges at positions D: -Ala(8) and D: -Ser(11) in the peptide have produced additional novel derivatives of daptomycin. The approaches of subunit exchanges and module exchanges were combined with amino acid modifications of Glu at position 12 and natural variations in lipid side chain starter units to generate a combinatorial library of antibiotics related to daptomycin. Many of the engineered strains produced levels of novel molecules amenable to isolation and antimicrobial testing, and most of the compounds displayed antibacterial activities.  相似文献   

14.
Summary Alpha-IPM synthase catalyzes the first committed step in leucine biosynthesis in the yeast S. cerevisiae. LEU4 is known to encode this enzyme activity. A second gene, LEU5, has been proposed to encode a second enzyme with this activity.We cloned LEU5 and genetically defined the locus. LEU5 maps to chromosome VIII and is tightly linked to CEN8.Five different mutations in LEU5 were analyzed: a sitedirected deletion and a disruption, as well as three distinct mutations produced by chemical mutagenesis. In a leu4 background, each leu5 mutation causes a Leu — phenotype; in a LEU4 background, none of the mutations alters the Leu+ phenotype. This shows that LEU5 is not essential for leucine biosynthesis. In either a leu4 or LEU4 background, each leu5 mutation causes a glycerol — phenotype. This operationally defines LEU5 as a PET gene.Two distinct suppressors of the Pet — phenotype of leu5 strains have been isolated. These suppressors revert the Pet — phenotype of each of four mutant leu5 alleles that were tested. Suppression occurs regardless of the allele at LEU4. Moreover, the suppressors co-revert the Leu — phenotype for each of the four leu5 mutations that is combined with a leu4 allele. This establishes the presence of a gene other than LEU5 that encodes a second alpha-IPM synthase. Further analysis provided no evidence for synthase activity that is encoded by LEU5.Abbreviation EMS ethylmethane sulfonate - IPM isopropylmalate - NPD nonparental ditype - PD parental ditype - TT tetratype  相似文献   

15.
NovW, novU, and novS gene products represent dTDP-4-keto-6-deoxy-D-glucose 3,5 epimarase, C-methyltransferase and dTDP-glucose-4-ketoreductase involved in noviose biosynthetic pathway, respectively. We have expressed three genes to elucidate the functions of NovW, NovU, and NovS in Escherichia coli. NovW and NovU catalyze the formation of dTDP-4-keto-6-deoxy-5-C-methyl-L-lyxo-hexose from dTDP-4-keto-6-deoxy-D-glucose. NovS reduces the product formed from the reaction of NovW with dTDP-4-keto-6-deoxy-D-glucose in the presence of NADH to result in dTDP-l-rhamnose. Furthermore, a pathway for the biosynthesis of noviose is proposed.  相似文献   

16.
A new rare 20-membered macrocyclic lactam incorporating a diene conjugated olefin, designated sannastatin (1), together with the known structurally related vicenistatin (2), has been isolated from the cultures of Streptomyces sannanensis, a bacteria found in the feces of Ailuropoda melanoleuca. The structure of the new compound was established on the basis of extensive spectroscopic analyses including 1D- and 2D-NMR (1H-1H COSY, TOCSY, HSQC, HMBC, and NOESY) experiments. Compounds 1 and 2 displayed significant growth inhibitory activity against the brine shrimp (Artemia salina) larvae.  相似文献   

17.
The lipooligosaccharide (LOS) of Moraxella catarrhalis is unusual in that it lacks heptose. The sugar linking oligosaccharide to Lipid A is a trisubstituted glucose. A single enzyme, Lgt3, is suggested to trisubstitute this core sugar. The lgt3 gene encodes two distinct domains with high similarity to glucosyltransferases of the GT-A superfamily, thus encoding a bidomain, multifunctional glucosyltransferase. To characterise Lgt3, the gene was amplified from M. catarrhalis, expressed in Escherichia coli, and purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima for Lgt3. The donor specificity and acceptor specificity were examined. This study confirms that Lgt3 is a glucosyltransferase which catalyses addition of glucose to its cognate receptor, a terminal glucose presented as the core region of LOS.  相似文献   

18.
Remminghorst U  Rehm BH 《FEBS letters》2006,580(16):3883-3888
Here the putative alginate biosynthesis gene alg44 of Pseudomonas aeruginosa was functionally assigned. Non-polar isogenic alg44 deletion mutants of P. aeruginosa were generated and did neither produce alginate nor released free uronic acids. No evidence for alginate enrichment in the periplasm was obtained. Alginate production was restored by introducing only the gene alg44. PhoA fusion protein analyses suggested that Alg44 is a soluble protein localized in the periplasm. Hexahistidine-tagged Alg44 was detected by immunoblotting. The corresponding 42.6 kDa protein was purified and identified by MALDI/TOF-MS analysis. Alg44 might be directly involved in alginate polymerization presumably by exerting a regulatory function.  相似文献   

19.
EXT gene family members including EXT1, EXT2, and EXTL2 are glycosyltransferases required for heparan sulfate biosynthesis. To examine the biological functions of rib-2, a member of the Caenorhabditis elegans EXT gene family, we generated a mutant worm lacking the rib-2 gene using the UV-TMP method followed by sib-selection. Inactivation of rib-2 alleles induced developmental abnormalities in F2 and F3 homozygous worms, while F1 heterozygotes showed a normal morphology. The F2 homozygous progeny generated from the F1 heterozygous hermaphrodites somehow developed to adult stage but exhibited abnormal characteristics such as developmental delay and egg-laying defects. The F3 homozygous progeny from the F2 homozygous hermaphrodites showed early developmental defects and most of the F3 worms stopped developing during the gastrulation stage. Whole-mount staining analysis for heparan sulfate using Toluidine blue (pH 2.5) revealed a defect of heparan sulfate biosynthesis in the F2 homozygotes. The analysis using fluorometric post-column high-performance liquid chromatography also uncovered reduced production of heparan sulfate in the rib-2 mutant. These results indicate that rib-2 is essential for embryonic development and heparan sulfate biosynthesis in C. elegans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号