首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The skulls of Myrmecophaga, Tamandua, and Cyclopes are klinorhynch; the upper jaw is situated rostral to the neurocranium and to a varying degree ventral to the plane of the median basis cranii. The median part of the base of the neurocranium is the structure to which the anatomical modifications in the median plane are referred. The kyphosis, which determines the situation of the upper jaw, is prebasically located either within the upper jaw (Myrmecophaga, Tamandua) or at its basis (Cyclopes).  相似文献   

2.
Kinematic data on primate head and neck posture were collected by filming 29 primate species during locomotion. These were used to test whether head and neck posture are significant influences on basicranial flexion and whether the Frankfurt plane can legitimately be employed in paleoanthropological studies. Three kinematic measurements were recorded as angles relative to the gravity vector, the inclination of the orbital plane, the inclination of the neck, and the inclination of the Frankfurt plane. A fourth kinematic measurement was calculated as the angle between the neck and the orbital plane (the head-neck angle [HNA]). The functional relationships of basicranial flexion were examined by calculating the correlations and partial correlations between HNA and craniometric measurements representing basicranial flexion, orbital kyphosis, and relative brain size (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). Significant partial correlations were observed between relative brain size and basicranial flexion and between HNA and orbital kyphosis. This indicates that brain size, rather than head and neck posture, is the primary influence on flexion, while the degree of orbital kyphosis may act to reorient the visual field in response to variation in head and neck posture. Regarding registration planes, the Frankfurt plane was found to be horizontal in humans but inclined in all nonhuman primates. In contrast, nearly all primates (including humans) oriented their orbits such that they faced anteriorly and slightly inferiorly. These results suggest that for certain functional craniometric studies, the orbital plane may be a more suitable registration plane than Frankfurt “Horizontal.” Am J Phys Anthropol 108:205–222, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Craniofacial morphology and cultural cranial deformation were analyzed by the computer morphometric system in 79 adult Hawaiian skulls from Mokapu, Oahu. The average Hawaiian male was large, but similar in shape to the female. Both were larger than the present Caucasian, showed a greater dental protrusion, and possessed a larger ANB angle, flatter cranial base, and larger facial heights. Correlations in Hawaiian craniofacial structure were found between an increasing mandibular plane angle and (1) shorter posterior facial height, (2) larger gonial angle, (3) larger cranial base angle, and (4) smaller SNA and SNB angles. Of the 79 skulls studied, 8. 9% were found to have severe head molding or intentional cranial deformation. Significant statistical differences between the molded group and the nonmolded group are, in decreasing significance: (1) larger upper face height, (2) smaller glabella to occiput distance, and (3) increased lower face height with deformation. The morphometric differences were readily seen by graphic comparison between groups. It is postulated that external forces to the neurocranium result in redirection of the growth vectors in the neurocranial functional matrix, including the cranial base, and secondarily, to the orofacial functional matrix. There is a possibility that the cranial deformation is a retention of the normal birth molding changes. The Polynesian “rocker jaw” was found in 81% to 95% of this populace. This mandibular form occurs only with attainment of adult stature and craniofacial form. This data agrees with the hypothesis that mandibular form is modified by the physical forces present and their direction in the orofacial functional matrix.  相似文献   

4.
Standardized lateral cephalograms of eleven skulls with artificial cranial deformations from Eastern Europe and twenty normal skulls from the same population were made, digitized and imported into the AutoCAD 2005 computer program. The x- and y-coordinates of defined measuring points were determined and angle measurements were made. The form difference of the skulls was tested with the Euclidean Distance Matrix Analysis (EDMA) and the difference of the angle measurements were compared statistically using the non-parametric Mann-Whitney test. All deformed skulls belonged to the tabular fronto-occipital type of deformation. The results of the EDMA and the angle measurements indicated significant differences for the neurocranium and the facial cranium in height between the normal and the deformed skulls, but not in the cranial length. It can be concluded that in Eastern Europe one method of cranial molding was used. The deformation of the neurocranium also affected the development of the facial cranium regarding facial height. This may indicate a dependency of the developmental fields of the neurocranium and facial cranium.  相似文献   

5.
M Michejda 《Acta anatomica》1975,91(1):110-117
Cross-sectional studies of the degree of the cranial base flexion were carried out in infant, juvenile and adult skulls in four genera of nonhuman primates (P. paniscus, H. lar, P. urinus, and M. mullatta). The cephalometric observations of the cranial base included linear and angular measurements of each specimen. The data obtained in this study showed that the anterior portion of the cranial base exhibits a significant shortening trend as the mammalian evolutionary scale ascends. Moreover, the growth pattern of the anterior portion of the skull base follows that of the facial bony structures. The ontogenic growth changes of the posterior portion of the skull base follows the growth pattern of the endocranial cavity. The significant trend of elongation in this area directly contributes to the posterior migration of the foramen magnum. The magnitude of these growth changes decreases as the evolutionary scale ascends. The angular measurements of the cranial flexion showed a less obtuse cranial base angle in young specimens and the ones higher on the mammalian scale. The skull kyphosis was less pronounced in these specimens and the anatomical features of the cranial base were more humanlike, including the balance of the head expressed by the position of the foramen magnum.  相似文献   

6.
Heterochrony is an evolutionary mechanism that generates diversity via perturbations of the rate or timing of development that requires very little genetic innovation. As such, heterochrony is thought to be a common evolutionary mechanism in the generation of diversity. Previous research has suggested that dogs evolved via heterochrony and are paedomorphic wolves. This study uses three-dimensional landmark-based coordinate data to investigate heterochronic patterns within the skull morphology of the domestic dog. A total of 677 adult dogs representing 106 different breeds were measured and compared with an ontogenetic series of 401 wolves. Geometric morphometric analysis reveals that the cranial shape of none of the modern breeds of dogs resembles the cranial shapes of adult or juvenile wolves. In addition, investigations of regional heterochrony in the face and neurocranium also reject the hypothesis of heterochrony. Throughout wolf cranial development the position of the face and the neurocranium remain in the same plane. Dogs, however, have a de novo cranial flexion in which the palate is tilted dorsally in brachycephalic and mesaticephalic breeds or tilted ventrally in dolichocephalic and down-face breeds. Dogs have evolved very rapidly into an incredibly morphologically diverse species with very little genetic variation. However, the genetic alterations to dog cranial development that have produced this vast range of phylogenetically novel skull shapes do not coincide with the expectations of the heterochronic model. Dogs are not paedomorphic wolves.  相似文献   

7.
In comparative and evolutionary aspects in humans, the middle meningeal artery enters the cranium through the foramen spinosum, whereas in great apes the middle meningeal artery can enter the cranium through foramen spinosum, through foramen ovale or through petrosphenoid fissure. Generally, in nonhuman primates the anterior meningeal system is associated with the ophthalmic branch of the internal carotid artery. The vessels joining the two systems pass through the additional channels: the superior orbital fissure or through the cranio-orbital foramen. In anatomically modern humans, the absence of foramen spinosum involves abnormal development and course of the middle meningeal artery and it is usually accompanied with replacement of the conventional middle meningeal artery with such, arising from the ophthalmic artery system. In these cases the middle meningeal artery most often enters the middle cranial fossa through the superior orbital fissure and rarely through the meningo-orbital foramen. All skulls, investigated in the present study, belonged to adult individuals of both sexes, conditionally grouped into three cranial series--contemporary male, medieval male, and medieval female series. The absence of foramen spinosum was established only among the medieval male and female series--in 1 (0.70%) male and in 1 (0.72%) female skull on the right side and in 3 (2.13%) female skulls on the left side. In 1 (0.72%) female skull, a small atypically located foramen spinosum was established on the right side. In all of the described cases, the intracranial meningeal grooves started from the lateral edge of the superior orbital fissure and probably reflect the ophthalmic origin of the middle meningeal artery.  相似文献   

8.
Pivotally positioned as the interface between the neurocranium and the face, the cranial base has long been recognized as a key area to our understanding of the origins of modern human skull form. Compared with other primates, modern humans have more coronally orientated petrous bones and a higher degree of basicranial flexion, resulting in a deeper and wider posterior cranial fossa. It has been argued that this derived condition results from a phylogenetic increase in the size of the brain and its subcomponents (infra- and supratentorial volumes) relative to corresponding lengths of the cranial base (posterior and anterior, respectively). The purpose of this study was to test such evolutionary hypotheses in a prenatal ontogenetic context. We measured the degree of basicranial flexion, petrous reorientation, base lengths, and endocranial volumes from high-resolution magnetic resonance images (hrMRI) of 46 human fetuses ranging from 10-29 weeks of gestation. Bivariate comparisons with age revealed a number of temporal trends during the period investigated, most notable of which were coronal rotation of the petrous bones and basicranial retroflexion (flattening). Importantly, the results reveal significant increases of relative endocranial sizes across the sample, and the hypotheses therefore predict correlated variations of cranial base flexion and petrous orientation in accordance with these increases. Statistical analyses did not yield results as predicted by the hypotheses. Thus, the propositions that base flexion and petrous reorientation are due to increases of relative endocranial sizes were not corroborated by the findings of this study, at least for the period investigated.  相似文献   

9.
Comparative work among nonhominid primates has demonstrated that the basicranium becomes more flexed with increasing brain size relative to basicranial length and as the -upper and lower face become more ventrally deflected (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). In order to determine whether modern humans and fossil hominids follow these trends, the cranial base angle (measure of basicranial flexion), angle of facial kyphosis, and angle of orbital axis orientation were measured from computed tomography (CT) scans of fossil hominids (Sts 5, MLD 37/38, OH9, Kabwe) and lateral radiographs of 99 extant humans. Brain size relative to basicranial length was calculated from measures of neurocranial volume and basicranial length taken from original skulls, radiographs, CT scans, and the literature. Results of bivariate correlation analyses revealed that among modern humans basicranial flexion and brain size/basicranial length are not significantly correlated, nor are the angles of orbital axis orientation and facial kyphosis. However, basicranial flexion and orbit orientation are significantly positively correlated among the humans sampled, as are basicranial flexion and the angle of facial kyphosis. Relative to the comparative sample from Ross and Ravosa (1993), all hominids have more flexed basicrania than other primates: Archaic Homo sapiens, Homo erectus, and Australopithecus africanus do not differ significantly from Modern Homo sapiens in their degree of basicranial flexion, although they differ widely in their relative brain size. Comparison of the hominid values with those predicted by the nonhominid reduced major-axis equations reveal that, for their brain size/basicranial length, Archaic and Modern Homo sapiens have less flexed basicrania than predicted. H. erectus and A. africanus have the degree of basicranial flexion predicted by the nonhominid reduced major-axis equation. Modern humans have more ventrally deflected orbits than all other primates and, for their degree of basicranial flexion, have more ventrally deflected orbits than predicted by the regression equations for hominoids. All hominoids have more ventrally deflected orbital axes relative to their palate orientation than other primates. It is argued that hominids do not strictly obey the trend for basicranial flexion to increase with increasing relative brain size because of constraints on the amount of flexion that do not allow it to decrease much below 90°. Therefore, if basicranial flexion is a mechanism for accommodating an expanding brain among non-hominid primates, other mechanisms must be at work among hominids. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Artificial fronto-occipital deformation of the cranial vault was typical of pre-Columbian cultures in the central Andean coastal regions. We have studied the influence of this deformation on maxillary and mandibular morphology. Measurements were performed on 86 adult Ancon skulls with anteroposterior deformation. Undeformed skulls from the area of Makatampu (n = 52) were used as the control group. To explore the influence of the deformity on occlusion, the skulls were categorized using the Angle classification and the alignment of the interincisor midline. In the group of deformed skulls, there was an increase in lateral growth of the vault and of the base of the skull (P < 0.001), giving rise to a greater interpterygoid width of the maxilla (P < 0.001), and an increase in the transverse diameter of the palatal vault. The mandible presented an increase in the length of the rami (P < 0.001) and in the intercondylar width, with no alteration of mandibular length. The deformed skulls had normal (class I) occlusion, with no displacement of the midline. The difference in the asymmetry index between the two groups was not statistically significant. Artificial fronto-occipital deformation of the cranial vault provoked compensatory lateral expansion of the base that was correlated with the transverse development of the maxilla and mandible. Occlusion and sagittal intermaxillary position were not affected by the cranial deformity. These results provide evidence of the integration between the neurocranium and the viscerocranium in craniofacial development, and support the hypothesis of a compensatory effect of function.  相似文献   

11.
The aim of this study was to examine the change in the occlusal plane inclination that takes place during craniofacial growth relative to various facio-cranial reference lines, as well as to find possible differences in means between sexes, to determine if there were correlations among variables, and to find out which of the parameters were the most reliable in determining the occlusal plane inclination. The investigation was carried out on 192 lateral radiographs of subjects divided into five age groups. The radiographs were traced and six angular roentgencephalometric variables were analysed by using different reference lines: cranial base (OLNS), Frankfort horizontal (OLFH), maxillary base (OLPL), mandibular base (OLML), anterior face height (OLNM) and posterior face height (OLSGO). It could be concluded that the change in occlusal plane inclination shows anterior rotation (left profile) during growth. The most significant change of the occlusal plane inclination was found using variables OLPL, OLFH and OLNS. There were no significant differences according to sex. Small but significant correlations were found between all investigated variables, except OLML.  相似文献   

12.
The postnatal growth of the viscerocranium in relation to the neurocranium of Pan troglodytes verus has been investigated using standardized lateral cephalograms. Sex and age were determined on the basis of cranial morphology and the skulls were divided into four age groups: infantile, juvenile, subadult and adult. The cephalograms were traced on transparencies and specific anatomical landmarks were identified for the measurement of lines angles and the area of the neurocranium and viscerocranium. The results showed that the skull of Pan troglodytes verus exhibits klinorhynchy. During postnatal growth it develops towards airorhynchy, but never shows true airorhynchy. In the infantile age group the measured area of the neurocranium is larger than that of the viscerocranium. The measured area of the viscerocranium increases until adulthood and is larger than that of the neurocranium in the subadult and adult group. From the results we conclude that in Pan troglodytes verus growth of the neurocranium seizes early in juvenile individuals, whereas the viscerocranium grows until adulthood. This may reflect an adaptation to the masticatory system.  相似文献   

13.
1. The angle between the Os sphenoidale and the Clivus has been determined on 106 skulls. The mean was 117.68 degrees. 2. The altitude of the Foramen magnum with respect to the Frankfort plane was determined at -1.96 cm on the average. 3. The angle of inclination of the Foramen magnum to the Frankfort plane was determined from the altitude of the Basion and Opisthion and from the length of the Foramen magnum. The mean was -13.71 degrees. 4. In the inner base of the skull the altitudes of following structures have been determined: Planum sphenoidale (mean 2.34 cm), ground of the Fossa hypophysialis (1.32 cm), ground of the middle cranial fossa (-0.03 cm), ground of the posterior cranial fossa (-2.30 cm), upper edge of the Os petrosum (1.12 cm), Tuberculum jugulare (-0.21 cm), ground of the Meatus acusticus internus (0.45 cm). 5. In order to provide numerical data for the step-like building of the inner base of the skull, the differences between the altitudes of important structures from the inner base have been determined: Margo superior partis petrosae - Tuberculum jugulare (mean 1.35 cm). Opisthion - ground of the posterior cranial fossa (0.11 cm), Planum sphenoidale - ground of the middle cranial fossa (2.38 cm), ground of the middle cranial fossa - ground of the posterior cranial fossa (2.27 cm), Margo superior partis petrosae - ground of the posterior cranial fossa (3.35 cm), Margo superior partis petrosae - ground of the middle cranial fossa (1.15 cm).  相似文献   

14.
Prenatal human cranial development evaluated on coronal plane radiographs   总被引:1,自引:0,他引:1  
The purpose of the present investigation has been to analyse prenatal cranial base development in the coronal plane and to combine the findings with results in former reports on cranial base maturation estimated in the horizontal and sagittal planes. The study is based upon cranial bases of 26 human fetuses from the first half of the prenatal period. Fetal coronal plane cranial base tissue blocks were dissected, radiographed, and sectioned for microscopic examination. Five stages in cranial base development are defined and related to general parameters for fetal size and fetal maturation. Two different maturation patterns were recognized in the sphenoid corpus. Canal structures, remnants of the craniopharyngeal canal, were observed in specimens showing bilateral centers of ossification in the sphenoid corpus. The radiographic method used is easy to record and recommended for diagnosing prenatal and neonatal cranial malformations.  相似文献   

15.
We conducted an interspecific comparison of skulls from two closely related but differently sized mustelid species, Mustela itatsi and M. sibirica (Mammalia, Carnivora, Mustelidae); a sexual comparison within the latter species showed remarkable size dimorphism. We clarified several differences in skull proportion related to size using allometric analyses and qualitative comparisons. Allometric analysis revealed that the skulls of male M. itatsi (the smaller species) have a relatively long palate; a slender viscerocranium and postorbital constriction; a broad, short, and low neurocranium; small carnassials; and a short mandible with a thin body and small ramus compared to the skulls of male M. sibirica (the larger species). Similar results were obtained when male M. itatsi were compared to female M. sibirica, although the male M. itatsi had a broader viscerocranium than female M. sibirica. A sexual comparison in M. sibirica revealed a larger skull size among the males with a relatively wide viscerocranium; wide postorbital constriction; a slender, long, and high neurocranium; short and wide auditory bullae; short carnassials; and a long and high mandible compared to females. Qualitative comparisons revealed changes in a few characters depending on skull size or with respect to some cranial components in each species. The interspecific differences observed were clearly larger than the intraspecific differences for three qualitative characters. The allometric and qualitative differences detected between these species suggest that each species is not simply the dwarf and/or giant morph of the other, and complicated differences were clarified.  相似文献   

16.
Three morphologically distinct populations of Peruvian crania (n = 130) were metrically analysed to quantify changes resulting from intentional artificial vault deformation. Two of these samples are artificially deformed (anteroposterior [AP] and circumferential [C] types). Measurements taken from lateral radiographs demonstrated that alternative forms of the cranial base angle (N-S-Ba, planum angle, planum sphenoidale to plane of the clivus and PANG angle, planum sphenoidale to basion-sella plane) and the orbital and OANG angles (orbital roof to plane of the clivus and basion-sella plane, respectively) of both deformed groups increased while the angle S-Ba-O decreased significantly with respect to the undeformed (N) sample. Changes in the AP group are largely due to anteroinferior displacement of the basion-sella plane. Similar changes in group C are amplified by this group's posterosuperior frontal migration. This migration results in a relatively shallow orbit at the orbital plate/frontal squama interface. Unlike the deformation experienced by the external vault plates, the basion-sella plane orientation remains stable with respect to the Frankfort Horizontal. Additionally, nasal region measurements such as maximum nasal aperture breadth and nasal height were largely stable between each deformed group and the undeformed group. However, facial (bimaxillary and bizygomatic), basicranial, cranial, and frontal breadths decreased significantly from group AP to group N to group C. Thus, gross morphological facial changes between each undeformed group and the control group are largely accounted for by dimensional changes in peripheral structures. These results stress the importance of the dynamic interrelationship between the cranial vault and base in the development of the craniofacial complex.  相似文献   

17.
Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7–3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4–3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen''s forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama—all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base.  相似文献   

18.
Odontocete (echolocating whale) skulls exhibit extreme posterior displacement and overlapping of facial bones, here referred to as retrograde cranial telescoping. To examine retrograde cranial telescoping across 40 million years of whale evolution, we collected 3D scans of whale skulls spanning odontocete evolution. We used a sliding semilandmark morphometric approach with Procrustes superimposition and PCA to capture and describe the morphological variation present in the facial region, followed by Ancestral Character State Reconstruction (ACSR) and evolutionary model fitting on significant components to determine how retrograde cranial telescoping evolved. The first PC score explains the majority of variation associated with telescoping and reflects the posterior migration of the external nares and premaxilla alongside expansion of the maxilla and frontal. The earliest diverging fossil odontocetes were found to exhibit a lesser degree of cranial telescoping than later diverging but contemporary whale taxa. Major shifts in PC scores and centroid size are identified at the base of Odontoceti, and early burst and punctuated equilibrium models best fit the evolution of retrograde telescoping. This indicates that the Oligocene was a period of unusually high diversity and evolution in whale skull morphology, with little subsequent evolution in telescoping.  相似文献   

19.
Numerous hypotheses explaining interspecific differences in the degree of basicranial flexion have been presented. Several authors have argued that an increase in relative brain size results in a spatial packing problem that is resolved by flexing the basicranium. Others attribute differences in the degree of basicranial flexion to different postural behaviors, suggesting that more orthograde animals require a ventrally flexed pre-sella basicranium in order to maintain the eyes in a correct forward-facing orientation. Less specific claims are made for a relationship between the degree of basicranial flexion and facial orientation. In order to evaluate these hypotheses, the degree of basicranial flexion (cranial base angle), palate orientation, and orbital axis orientation were measured from lateral radiographs of 68 primate species and combined with linear and volumetric measures as well as data on the size of the neocortex and telencephalon. Bivariate correlation and partial correlation analyses at several taxonomic levels revealed that, within haplorhines, the cranial base angle decreases with increasing neurocranial volume relative to basicranial length and is positively correlated with angles of facial kyphosis and orbital axis orientation. Strepsirhines show no significant correlations between the cranial base angle and any of the variables examined. It is argued that prior orbital approximation in the ancestral haplorhine integrated the medial orbital walls and pre-sella basicranium into a single structural network such that changes in the orientation of one necessarily affect the other. Gould's (“Ontogeny and Phylogeny.” Cambridge: Belknap Press, 1977) hypothesis, that the highly flexed basicranium of Homo may be due to a combination of a large brain and a relatively short basicranium, is corroborated. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Allometric methods and theory derived from principles of relative growth provide new and powerful approaches to an understanding of the nature and development of sexual dimorphism among living primates. The Frankfurt collection of Liberian chimpanzee skulls and mandibles provides a large skeletal sample from a single natural population of wild shot animals, including individuals of all ages and both sexes, and allows investigation of allometric and heterochronic patterns of sexual dimorphism. Univariate, bivariate, and multivariate analyses are utilized in this study in order to ascertain the ontogenetic nature of male-female differences in the skull of the Liberian chimpanzee. The results of univariate and multivariate analyses indicate that, while overall levels of sexual dimorphism in the chimpanzee skull are small, the greatest differences are in dimensions of the viscerocranium, while neurocranial dimensions and orbital size tend to be less dimorphic. Bivariate regressions of 21 cranial variables against basicranial length document positive allometry in many facial and mandibular dimensions, and isometry or negative allometry for most neurocranial dimensions. The data confirm previous work in chimpanzees and other anthropoid primates suggesting that males and females are “ontogenetically scaled” in most cranial traits. That is, males and females share the same cranial growth trajectories, although ending up at different points. Both rate and time hypermorphosis are suggested as underlying causes of ontogenetic scaling in the Liberian chimpanzee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号