首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a state of lymphopenia, naive and memory CD4 T cells compete with each other for expansion at the expense of naive T cells. This competition prevents the proliferation as well as the phenotypic and functional conversion of naive T cells to "memory-like" T cells and may consequently prevent immune pathology frequently associated with lymphopenia-induced proliferation of naive cells. However, in T cell replete mice, memory T cells do not compete with naive T cells, indicating independent homeostatic control of naive and memory CD4 T cells in conditions that do not involve profound lymphopenia. Moreover, within the memory compartment, subsequent generation of new memory T cells precludes the survival of memory-like T cells. Thus, memory T cells have a major role in the control of lymphopenia-induced proliferation of naive cells because they inhibit both the generation of memory-like T cells and their persistence within the memory compartment.  相似文献   

2.
Fluid shear stress plays an important role in bone remodeling, however, the mechanism of mechanotransduction in bone tissue remains unclear. Recently, ERK5 has been found to be involved in multiple cellular processes. This study was designed to investigate the potential involvement of ERK5 in the proliferative response of osteoblastic cells to cyclic fluid shear stress. We reported here that cyclic fluid shear stress promoted ERK5 phosphorylation in MC3T3-E1 cells. Inhibition of ERK5 phosphorylation attenuated the increased expression of AP-1 and cyclin D1 and cell proliferation induced by cyclic fluid flow, but promoted p-16 expression. Further more, we found that cyclic fluid shear stress was a better stimuli for ERK5 activation and cyclin D1 expression compared with continuous fluid shear stress. Moreover, the pharmacological ERK5 inhibitor, BIX02189, which inhibited ERK5 phosphorylation in a time-dependent manner and the suppression lasted for at least 4 h. Taken together, we demonstrate that ERK5/AP-1/cyclin D1 pathway is involved in the mechanism of osteoblasts proliferation induced by cyclic fluid shear stress, which is superior in promoting cellular proliferation compared with continuous fluid shear stress.  相似文献   

3.
4.
Fibronectin plays important roles in erythropoiesis through the fibronectin receptors VLA-4 and VLA-5. However, the substantial role of these fibronectin receptors and their functional assignment in erythroid differentiation are not yet fully understood. Here, we investigated the effects of cell adhesion to fibronectin on erythroid differentiation using K562 human erythroid progenitor cells. Erythroid differentiation could be induced in K562 cells in suspension by stimulating with hemin. This hemin-stimulated erythroid differentiation was highly accelerated when cells were induced to adhere to fibronectin by treatment with TNIIIA2, a peptide derived from tenascin-C, which has recently been found to induce β1-integrin activation. Another integrin activator, Mn2+, also accelerated hemin-stimulated erythroid differentiation. Adhesive interaction with fibronectin via VLA-4 as well as VLA-5 was responsible for acceleration of the hemin-stimulated erythroid differentiation in response to TNIIIA2, although K562 cells should have been lacking in VLA-4. Adhesion to fibronectin forced by TNIIIA2 causally induced VLA-4 expression in K562 cells, and this was blocked by the RGD peptide, an antagonist for VLA-5. The resulting adhesive interaction with fibronectin via VLA-4 strongly enhanced the hemin-stimulated activation of p38 mitogen-activated protein kinase, which was shown to serve as a signaling molecule crucial for erythroid differentiation. Suppression of VLA-4 expression by RNA interference abrogated acceleration of hemin-stimulated erythroid differentiation in response to TNIIIA2. Thus, VLA-4 and VLA-5 may contribute to erythropoiesis at different stages of erythroid differentiation.Hematopoietic stem and progenitor cells proliferate and differentiate in the bone marrow and fetal liver (16). Stromal cells of the bone marrow and fetal liver form a hematopoietic microenvironment called a “niche.” This microenvironment niche plays a crucial role in the regulation of the proliferation and differentiation of hematopoietic stem and progenitor cells. Besides humoral factors that include hematopoietic growth factors, adhesive interaction of hematopoietic stem and progenitor cells with stromal cells and/or the extracellular matrix (ECM)2 in the hematopoietic microenvironment is indispensable for hematopoietic development (16). The ECM in the hematopoietic microenvironment is composed of various macromolecules, such as fibronectin (FN), collagens, laminins, and proteoglycans. Among them, FN is one of the most important parts of the microenvironment niche (711). Also, in erythropoiesis, the importance of the adhesion of erythroid progenitors to FN via the FN receptors VLA-4 and VLA-5 has been reported (1116). However, the substantial role of these FN receptors and their functional assignment in erythroid differentiation are not yet fully understood.We previously found that FN, which provides scaffolding for the adhesion of various cell types, has an alternative functional site opposing cell adhesion (17). A 22-mer peptide derived from the 14th FN type III-like (FNIII) repeat of the FN molecule, termed FNIII14, strongly suppresses cell adhesion to FN by inhibiting the activation of β1-integrins including VLA-4 and VLA-5 (18, 19). Conversely, we have recently found that tenascin (TN)-C, which is an anti-adhesive ECM protein (20, 21), has a functional site for stimulating cell adhesion to FN (22). A 22-mer peptide derived from the FNIII repeat A2 in the TN-C molecule, termed TNIIIA2, can induce the conformational change necessary for functional activation of FN receptors through binding with syndecan-4 (22, 23). The active sites of FNIII14 and TNIIIA2 appear to be cryptic in the molecular structures of FN and TN-C but are exposed by conformational change through interaction with other ECM molecules or by processing with matrix metalloproteinase-2 (22, 24). Thus, these functional sites found in FN and TN-C molecules, which act in opposition to their parental ECM proteins, may act as a negative feedback loop for preventing excessive cellular responses to these ECM proteins in biological processes with ECM rearrangement. In any case, FNIII14 and TNIIIA2 enable us to control, either negatively or positively, the adhesion of various cell types to FN.Various hematopoietic progenitor cell lines have been used in in vitro studies of hematopoietic differentiation. However, most hematopoietic progenitor cell lines are nonadherent, because their cell surface β1-integrins, including FN receptors, have impaired ligand-binding activity (25, 26). Therefore, in order to investigate the role of cell adhesion to FN in hematopoietic differentiation, their FN receptors must be activated. Since TNIIIA2 can induce activation of FN receptors in various hematopoietic progenitor cell lines (22), this peptide factor may be useful for investigating the substantial role of cell adhesion to FN in hematopoietic differentiation. Here, we investigate the effects of cell adhesion to FN on erythroid differentiation using TNIIIA2 and Mn2+ as the integrin activator and the human erythroid progenitor cell line K562, which only expresses VLA-5, as the FN receptor (27). As a result, we show that hemin-stimulated erythroid differentiation of K562 cells is strongly enhanced when K562 cells are forced to adhere to FN. Sustained adhesion to FN via VLA-5, which is induced by TNIIIA2 or Mn2+, causes induction of VLA-4 expression. The resulting adhesive interaction with FN via newly expressed VLA-4 then generates a conspicuous increase in the hemin-stimulated phosphorylation/activation of p38 MAP kinase, which is shown to serve as a signaling molecule crucial for erythroid differentiation of K562 cells.  相似文献   

5.
IL-15 promotes the survival of naive and memory phenotype CD8+ T cells   总被引:18,自引:0,他引:18  
IL-15 stimulates the proliferation of memory phenotype CD44(high)CD8(+) T cells and is thought to play a key role in regulating the turnover of these cells in vivo. We have investigated whether IL-15 also has the capacity to affect the life span of naive phenotype (CD44(low)) CD8(+) T cells. We report that IL-15 promotes the survival of both CD44(low) and CD44(high) CD8(+) T cells, doing so at much lower concentrations than required to induce proliferation of CD44(high) cells. Rescue from apoptosis was associated with the up-regulation of Bcl-2 in both cell types, whereas elevated expression of Bcl-x(L) was observed among CD44(high) but not CD44(low) CD8(+) cells. An investigation into the role of IL-15R subunits in mediating the effects of IL-15 revealed distinct contributions of the alpha- and beta- and gamma-chains. Most strikingly, IL-15R alpha was not essential for either induction of proliferation or promotion of survival by IL-15, but did greatly enhance the sensitivity of cells to low concentrations of IL-15. By contrast, the beta- and gamma-chains of the IL-15R were absolutely required for the proliferative and pro-survival effects of IL-15, although it was not necessary for CD44(high)CD8(+) cells to express higher levels of IL-15R beta than CD44(low) cells to proliferate in response to IL-15. These results show that IL-15 has multiple effects on CD8 T cells and possesses the potential to regulate the life span of naive as well as memory CD8(+) T cells.  相似文献   

6.
Lymphopenia has been associated with autoimmune pathology and it has been suggested that lymphopenia-induced proliferation of naive T cells may be responsible for the development of immune pathology. In this study we demonstrate that lymphopenia-induced proliferation is restricted to conditions of extreme lymphopenia, because neither naive nor memory T cells transferred into T cell-depleted hosts proliferate unless the depletion exceeds 90% of the peripheral repertoire. Memory CD4 T cells as well as regulatory CD4 T cells proved to be relatively resistant to depletion regimes, and both subsets restrict the expansion and phenotypic conversion of naive T cells by an IL-7R-dependent mechanism. It therefore seems unlikely that lymphopenia-induced proliferation of peripheral T cells causes deleterious side effects that result in immune pathology in states of partial and transient lymphopenia.  相似文献   

7.
Given prior evidence that adhesion molecules play critical roles in T cell recognition, it is important to identify new adhesion pathways and explore their role in T cell activation. Our studies of T cell proliferation complement concurrent studies of T cell adhesion; both demonstrate that resting CD4+ human T lymphocytes express the VLA integrins VLA-4, VLA-5, and VLA-6, and can use these receptors to interact with the extracellular matrix (ECM) proteins fibronectin (VLA-4 and VLA-5) and laminin (VLA-6). VLA-dependent interaction of resting human CD4+ T cells with fibronectin (FN) and laminin (LN) facilitates CD3-mediated T cell proliferation. Specifically, T cells do not proliferate in response to a wide range of concentrations of a CD3 mAb, OKT3, immobilized on plastic. However, coimmobilization with the CD3 mAb of FN or LN, but not other ECM proteins such as fibrinogen and collagen, consistently results in strong T cell proliferation. mAb blocking studies demonstrate that three VLA integrin receptor/ligand interactions mediate costimulation: VLA-4/FN, VLA-5/FN, and VLA-6/LN. VLA-5-dependent binding to FN but not costimulation by FN can be specifically blocked with peptides containing the RGD (arg-gly-asp) tripeptide sequence whereas VLA-4-dependent binding and costimulation can both be efficiently inhibited by a 12 amino acid peptide, LHGPEILDVPST (leu-his-gly-pro-glu-iso-leu-asp-val-pro-ser-thr), derived from the alternatively spliced IIICS region of FN. The costimulation provided by FN and LN in this system is stronger than and distinct from costimulatory signals provided by cytokines, such as IL-1 beta, IL-6,, and IL-7. These results suggest that, such as other adhesion molecules, T cell VLA integrins may also function in a dual capacity as adhesion and signalling molecules. In addition, they suggest that the interaction of T cells in vivo with ECM via VLA integrins plays a role not only in T cell migratory processes but may also influence Ag-specific T cell recognition.  相似文献   

8.
The immunological synapse is a highly organized complex formed at the junction between Ag-specific T cells and APCs as a prelude to cell activation. Although its exact role in modulating T cell signaling is unknown, it is commonly believed that the immunological synapse is the site of cross-talk between the T cell and APC (or target). We have examined the synapses formed by naive and memory CD4 cells during Ag-specific cognate interactions with APCs. We show that the mature immunological synapse forms more quickly during memory T cell activation. We further show that the composition of the synapse found in naive or memory cell conjugates with APCs is distinct with the tyrosine phosphatase, CD45, being a more integral component of the mature synapses formed by memory cells. Finally, we show that signaling molecules, including CD45, are preassociated in discrete, lipid-raft microdomains in resting memory cells but not in naive cells. Thus, enhanced memory cell responses may be due to intrinsic properties of signaling molecule organization.  相似文献   

9.
It has been recently demonstrated that circulating microbial products are responsible for a systemic immune activation in individuals infected with HIV-type 1. Bacterial products carry structural conserved motifs recognized by TLRs. Some TLR members are expressed in primary human CD4+ T cells but the precise functional role played by these pattern recognition receptors is still imprecise. In this study, we report that engagement of TLR2 in quiescent naive and memory CD4+ T cells leads to the acquisition of an effector-like phenotype. Interestingly, engagement of TLR2 renders both cell subsets more susceptible to productive infection with X4 virions and a higher virus production was seen with R5 viruses. It can be proposed that exposure of resting CD4+ T cells to pathogen-derived products that can engage TLR2 induces the acquisition of an effector-like phenotype in naive and memory CD4+ T lymphocytes, a phenomenon that might result in an acceleration of virus replication, immune dysregulation, and HIV-type 1-mediated disease progression.  相似文献   

10.
11.
The signals that trigger IL-4-independent IL-4 synthesis by conventional CD4(+) T cells are not yet defined. In this study, we show that coactivation with anti-CD4 mAb can stimulate single naive CD4(+) T cells to form IL-4-producing clones in the absence of APC and exogenous IL-4, independently of effects on proliferation. When single CD4(+) lymph node cells from C57BL/6 mice were cultured with immobilized anti-CD3epsilon mAb and IL-2, 65-85% formed clones over 12-14 days. Coimmobilization of mAb to CD4, CD11a, and/or CD28 increased the size of these clones but each exerted different effects on their cytokine profiles. Most clones produced IFN-gamma and/or IL-3 regardless of the coactivating mAb. However, whereas 0-6% of clones obtained with mAb to CD11a or CD28 produced IL-4, 10-40% of those coactivated with anti-CD4 mAb were IL-4 producers. A similar response was observed among CD4(+) cells from BALB/c mice. Most IL-4-producing clones were derived from CD4(+) cells of naive (CD44(low) or CD62L(high)) phenotype and the great majority coproduced IFN-gamma and IL-3. The effect of anti-CD4 mAb on IL-4 synthesis could be dissociated from effects on clone size since anti-CD4 and anti-CD11a mAb stimulated formation of clones of similar size which differed markedly in IL-4 production. Engagement of CD3 and CD4 in the presence of IL-2 is therefore sufficient to induce a substantial proportion of naive CD4(+) T cells to form IL-4-producing clones in the absence of other exogenous signals, including IL-4 itself.  相似文献   

12.
The comparative analysis of responses of memory and naive T lymphocytes to Ca2+-mobilizing agents, namely Con A, thimerosal, thapsigargin and ionomycin, was carried out. The effect of these agents on both types of T cells differed qualitatively and quantitatively. The lack of intracellular Ca2+ stores in memory T cells was shown. Ca2+-mobilizing agents did not induce influx of Ca2+ in memory T cells from outside and this was the reason for their stability to Ca2+ ionophores. It was also shown that memory T cells were resistant to the 'Ca2+ paradox'.  相似文献   

13.
By introducing an alpha3 gene-containing plasmid into a human T cell line Jurkat, we prepared the T cells, which express a high level of the alpha3beta1 integrin, to assess the role of laminin 5 in the skin immune system. The alpha3beta1-expressing T cells adhered to laminin 5 and exhibited spreading. These adhered T cells showed a significant tyrosine phosphorylation of intracellular proteins including p59(fyn) upon T-cell receptor (TCR) stimulation. Six hours after cross-linking TCR, these cells on laminin 5 secreted a three times higher level of IL-2 than those on a BSA-coated plate. Twenty hours after the stimulation, 48% of the alpha3beta1-expressing T cells on laminin 5 caused apoptosis. The protein level of cyclin D3 and E decreased, while that of p53 increased in these T cells. These data suggest that laminin 5 may play at least two regulatory roles for T cell functions: augmentation of IL-2 production by antigen-stimulated T cells and induction of apoptosis in these T cells.  相似文献   

14.
The cell surface heterodimer VLA-4 (alpha 4 beta 1), a member of the integrin family of adhesion receptors, is involved in both cell-extracellular matrix and cell-cell adhesion. Unlike any other integrin alpha subunit, the intact (150 kDa) alpha 4 subunit of VLA-4 can sometimes be cleaved into two noncovalently associated fragments (80 and 70 kDa). Using biosynthetic and mixing experiments, we found that human alpha 4 cleavage is a regulated, compartmentalized event, occurring soon after maturation of the beta 1-associated alpha 4 subunit. Cleavage of alpha 4, which is increased following T cell activation, has been suggested to correlate with altered VLA-4 functions. To address directly the functional importance of alpha 4 cleavage, we have studied VLA-4-mediated adhesion functions in cells expressing intact alpha 4 in comparison with cells expressing cleaved alpha 4. For this purpose, we first sequenced the N terminus of the endogenously produced 70-kDa alpha 4 fragment and identified the alpha 4 cleavage site between Lys557-Arg558 and Ser559. To abolish cleavage, we converted Arg558 to Leu or Lys557 to Gln by site-directed mutagenesis of the alpha 4 cDNA and then transfected both mutant and wild type alpha 4 cDNAs into VLA-4-negative K562 cells. Whereas transfection with wild type alpha 4 cDNA yielded predominantly cleaved alpha 4 subunit, the Leu558-alpha 4 yielded only intact alpha 4 subunit, and Gln557-alpha 4 yielded mostly intact alpha 4 subunit. Transfectants with the intact or the cleaved alpha 4 were equally capable of engaging in VLA-4-dependent adhesion to vascular cell adhesion molecule-1 and to the Hep II fragment of fibronectin (40 kDa) and aggregated equally well in response to anti-alpha 4 antibodies. Thus, cleavage of the alpha 4 subunit in these transfectants did not alter any of the known VLA-4-mediated adhesion functions.  相似文献   

15.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

16.
It has been postulated that inactivated β1-integrins are involved in the disordered growth of hematopoietic tumor cells. We recently found that TNIIIA2, a peptide derived from tenascin-C, strongly activates β1-integrins through binding with syndecan-4. We show here that Ramos Burkitt''s lymphoma cells can survive and grow in suspension but undergo apoptosis when kept adhering to fibronectin by stimulation with TNIIIA2. Other integrin activators, Mg2+ and TS2/16 (an integrin-activating antibody), were also capable of inducing apoptosis. The inactivation of ERK1/2 and Akt and the subsequent activation of Bad were involved in the apoptosis. The results using other hematopoietic tumor cell lines expressing different levels of fibronectin receptors (VLA-4 and VLA-5) showed that potentiated and sustained adhesion to fibronectin via VLA-4 causally induces apoptosis also in various types of hematopoietic tumor cells in addition to Ramos cells. Because TNIIIA2 requires syndecan-4 as a membrane receptor for activation of β1-integrins, it induced apoptosis preferentially in hematopoietic tumor cells, which expressed both VLA-4 and syndecan-4 as membrane receptors mediating the effects of fibronectin and TNIIIA2, respectively. Therefore, normal peripheral blood cells, such as neutrophils, monocytes, and lymphocytes, which poorly expressed syndecan-4, were almost insusceptible to TNIIIA2-induced apoptosis. The TNIIIA2-related matricryptic site of TN-C could contribute, once exposed, to preventing prolonged survival of hematopoietic malignant progenitors through potentiated and sustained activation of VLA-4.  相似文献   

17.
The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.  相似文献   

18.
SPINDLIN1, a new member of the SPIN/SSTY gene family, was first identified as a gene highly expressed in ovarian cancer cells. We have previously shown that it is involved in the process of spindle organization and chromosomal stability and plays a role in the development of cancer. Nevertheless, the mechanisms underlying its oncogenic role are still largely unknown. Here, we first showed that expression of SPINDLIN1 is upregulated in clinical tumors. Ectopic expression of SPINDLIN1 promoted cancer cell proliferation and activated WNT/T-cell factor (TCF)-4 signaling. The Ser84 and Ser99 amino acids within SPINDLIN1 were further identified as the key functional sites in WNT/TCF-4 signaling activation. Mutation of these two sites of SPINDLIN1 abolished its effects on promoting WNT/TCF-4 signaling and cancer cell proliferation. We further found that Aurora-A could interact with and phosphorylate SPINDLIN1 at its key functional sites, Ser84 and Ser99, suggesting that phosphorylation of SPINDLIN1 is involved in its oncogenic function. Collectively, these results suggest that SPINDLIN1, which may be a novel substrate of the Aurora-A kinase, promotes cancer cell growth through WNT/TCF-4 signaling activation.  相似文献   

19.
The peripheral lymphocyte pool size is governed by homeostatic mechanisms. Thus, grafted T cells expand and replenish T cell compartments in lymphopenic hosts. Lymphopenia-driven proliferation of naive CD8+ T cells depends on self-peptide/MHC class I complexes and the cytokine IL-7. Lymphopenia-driven proliferation and maintenance of memory CD8+ T cells are MHC independent, but are believed to require IL-7 and contact with a bone marrow-derived cell that presents the cytokine IL-15 by virtue of its high affinity receptor (IL-15Ralpha). In this study we show that optimal spontaneous proliferation of grafted naive and memory CD8+ T cells in mice rendered lymphopenic through gene ablation or irradiation requires the presence of CD11chigh dendritic cells. Our results suggest a dual role of CD11chigh dendritic cells as unique APC and cytokine-presenting cells.  相似文献   

20.
The synthesis and identification of a novel series of inhibitors of integrin VLA-4 are described. Their in vitro activity and selectivity against closely related integrins are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号