首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Polyunsaturated fatty acids are needed for normal neonatal brain development, but the degree of conversion of the 18-carbon polyunsaturated fatty acid precursors consumed in the diet to their respective 20-and 22-carbon polyunsaturates accumulating in the brain is not well known. In the present study, in vivo 13C nuclear magnetic resonance spectroscopy was used to monitor noninvasively the brain uptake and metabolism of a mixture of uniformly 13C-enriched 16-and 18-carbon polyunsaturated fatty acid methyl esters injected intragastrically into neonatal rats. In vivo NMR spectra of the rat brain at postnatal days 10 and 17 had larger fatty acid signals than in uninjected controls, but changes in levels of individual fatty acids could not be distinguished. One day after injection of the U-13C-polyunsaturated fatty acid mixture, 13C enrichment (measured by isotope ratio mass spectrometry) was similar in brain phospholipids, free fatty acids, free cholesterol, and brain aqueous extract; 13C enrichment remained high in the phospholipids and cholesterol for 15 days. 13C enrichment was similar in the main fatty acids of the brain within 1 day of injection but 15 days later had declined in all except arachidonic acid while continuing to increase in docosahexaenoic acid. These changes in 13C enrichment in brain fatty acids paralleled the developmental changes in brain fatty acid composition. We conclude that, in the neonatal rat brain, dietary 16-and 18-carbon polyunsaturates are not only elongated and desaturated but are also utilized for de novo synthesis of long-chain saturated and monounsaturated fatty acids and cholesterol.  相似文献   

2.
Three 14C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[14C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[14C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[14C]docosahexaenoic acid (22:6(n-3)), were compared with [3H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.  相似文献   

3.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

4.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

5.
Recent literature provides a basis for understanding the behavioral, functional, and structural consequences of nutritional deprivation or disease-related abnormalities of n-3 polyunsaturated fatty acids. The literature suggests that these effects are mediated through competition between n-3 and n-6 polyunsaturated fatty acids at certain enzymatic steps, particularly those involving polyunsaturated fatty acid elongation and desaturation. One critical enzymatic site is a delta6-desaturase. On the other hand, an in-vivo method in rats, applied following chronic n-3 nutritional deprivation or chronic administration of lithium, indicates that the cycles of de-esterification/re-esterification of docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) within brain phospholipids operate independently of each other, and thus that the enzymes regulating each of these cycles are not likely sites of n-3/n-6 competition.  相似文献   

6.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

7.
Because alpha-synuclein may function as a fatty acid binding protein, we measured fatty acid incorporation into astrocytes isolated from wild-type and alpha-synuclein gene-ablated mice. alpha-Synuclein deficiency decreased palmitic acid (16:0) incorporation 31% and arachidonic acid [20:4 (n-6)] incorporation 39%, whereas 22:6 (n-3) incorporation was unaffected. In neutral lipids, fatty acid targeting of 20:4 (n-6) and 22:6 (n-3) (docosahexaenoic acid) to the neutral lipid fraction was increased 1.7-fold and 1.6-fold, respectively, with an increase in each of the major neutral lipids. This was consistent with a 3.4- to 3.8-fold increase in cholesteryl ester and triacylglycerol mass. In the phospholipid fraction, alpha-synuclein deficiency decreased 16:0 esterification 39% and 20:4 (n-6) esterification 43% and decreased the distribution of these fatty acids, including 22:6 (n-3), into this lipid pool. alpha-Synuclein gene-ablation significantly decreased the trafficking of these fatty acids to phosphatidylinositol. This observation is consistent with changes in phospholipid fatty acid composition in the alpha-synuclein-deficient astrocytes, including decreased 22:6 (n-3) content in the four major phospholipid classes. In summary, these studies demonstrate that alpha-synuclein deficiency significantly disrupted astrocyte fatty acid uptake and trafficking, with a marked increase in fatty acid trafficking to cholesteryl esters and triacylglycerols and decreased trafficking to phospholipids, including phosphatidylinositol.  相似文献   

8.
In studies on the metabolism of polyunsaturated fatty acids, acyl-CoA synthetase for 5,8,11,14-20:4 (arachidonic acid) and 5,8,11,14,17-20:5 (eicosapentaenoic acid) and the incorporation of these fatty acids into complex lipids and their conversion to CO2 were investigated in rat aorta. The activity of acyl-CoA synthetase was 35.9 for arachidonic acid and 63.0 for eicosapentaenoic acid (nmol/mg protein per 10 min) and the apparent Km values were 45 microM for arachidonic acid and 56 microM for eicosapentaenoic acid. Inhibition of eicosapentaenoyl-CoA synthesis by arachidonic acid was stronger than that of arachidonyl-CoA synthesis by eicosapentaenoic acid. Arachidonic acid and eicosapentaenoic acid were mostly incorporated into phospholipids. The incorporation of these fatty acids into cholesterol ester and their conversion to CO2 were less than those of palmitic acid, but their incorporation into triacyglycerol was greater. The incorporation of these fatty acids into phosphatidylserine + phosphatidylinositol and phosphatidylethanolamine was also greater than that of palmitic acid. The patterns of incorporation of arachidonic acid and eicosapentaenoic acid were similar. The physiological roles of these polyunsaturated fatty acids and the interference of eicosapentaenoic acid in arachidonic acid metabolism are discussed on the basis of these results.  相似文献   

9.
The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n-6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) and PGF2alpha. The 15-lipoygenase is very active in this tissue and catalyzes the transformation of 20-carbon AA into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). Similarly, the epidermal 15-lipoxygenase also catalyzes the transformation of 18-carbon LA and 20-carbon dihomo-gamma-linolenic acid (DGLA) to 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatrienoic acid (15-HETrE), respectively. The monohydroxy fatty acids are incorporated in phospholipids which undergo catalysis to yield substituted-diacylglycerols (13-HODE-DAG) and 15-HETrE-DAG) which exert anti-inflammatory/antiproliferative effects on the skin.  相似文献   

10.
When rats adapted to a fat-free diet were fed a corn oil diet, endogenous n-9 eicosatrienoic acid (the major polyunsaturated fatty acid) at the C-2 position of both phosphatidylcholine and phosphatidylethanolamine was quickly substituted by arachidonic acid in liver, plasma and platelets. Comparably, under a fish oil diet, the n-9 was quickly substituted by n-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In both cases the n-9 almost disappeared in 6 days. On the other hand, when the dietary process was reversed, arachidonic acid in both the phospholipid classes (especially in phosphatidylcholine) decreased more slowly than the n-3 in the platelets and the liver mitochondria and microsomes. In platelets, even in linoleate-deficient rats, much arachidonic acid remained. However, arachidonic acid decreased similarly to the n-3 in the plasma. These results may reveal the physiological significance of arachidonic acid in membrane phospholipids, the replacement of arachidonic acid by the n-3 and the limitation of the replacement.  相似文献   

11.
The degree of unsaturation of membrane lipids has been implicated in a number of physiological disorders, yet its regulation remains poorly understood, especially the regulation of the synthesis and distribution of arachidonic acid levels, the most abundant long chain polyunsaturated fatty acid in membranes. Transgenic mice expressing the ovine metallothionein 1a — ovine growth hormone (oMt1a-oGH) fusion gene exhibited significantly elevated levels of a number of long chain polyusaturated fatty acids in serum, including arachidonic acid. In oMt1a-oGH transgenic mice the products of all three desaturation pathways are affected by the expression of the ovine growth hormone trangene. The essential precursors of membrane long chain polyunsturated fatty acids, 18:2n-6 and 18:3n-3, were reduced in transgenic relative to controls, and their desaturation and elongation products, arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3), were elevated. As rare intermediate long chain polyunsaturated fatty acids such as eicosatrienoic acid (20:3n-9) were also signficantly elevated, we conclude that these observations reflect increased activity of the Δ-5 and Δ-6 desaturase enzymes. In contranst, the products of the stearoyl CoA or Δ-9 desaturase, were significantly reduced in oMt1a-oGH expressing transgenics relative to their levels in control mice.  相似文献   

12.
The purpose of this work was to see whether hyperlipaemia observed in genetically obese Zucker rats (fa/fa) was associated with differences in fatty-acid composition of plasma triacylglycerols, plasma phospholipids and of platelet phospholipids, in comparison with the control lean rats (Fa/-). Results showed that plasma triacylglycerols and phospholipids were increased in obese rats. In triacylglycerols, the amount of saturated and monounsaturated fatty acids was highly increased whereas the amount of the n-6 and n-3 polyunsaturated fatty acids was little modified. In plasma phospholipids, saturated and monounsaturated fatty acids were also increased, as were the n-3 fatty acids (except C 18:3 n-3); the n-6 fatty acids were little increased except C 20:3 n-6 which was markedly increased. These results concerning the amounts of fatty acids have their counterpart in their relative proportions of fatty acids. Data thus obtained suggest that conversion of linoleic acid (C 18:2 n-6) into arachidonic acid (C 20:4 n-6) was decreased in obese rats, particularly the delta 5 desaturation step. On the contrary, conversion of linolenic acid (C 18:3 n-3) into higher polyenes seemed increased. Thrombocytosis was not modified in the obese rat, but the volume of the platelets was increased. Platelet phospholipids exhibited the same modifications as plasma phospholipids but with different magnitude. Saturated and monounsaturated fatty acids were little augmented, n-3 fatty acids were more augmented (except C 18:3 n-3 acid which was unchanged); n-6 fatty acids were not modified except C 20:3 n-6 acid which was highly increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
On the basis of earlier studies of rabbit pulmonary alveolar macrophages, the incorporation of 14C-labelled polyunsaturated fatty acids into the lipids of human fibroblasts from patients with various phenotypes of Niemann-Pick disease was examined in order to define further the disturbance in metabolism of bis(monoacylglycero)phosphate occurring in these disorders. Docosahexaenoic acid, which had not been studied previously, was found to be incorporated by macrophages into bis(monoacylglycero)phosphate in a highly selective fashion and was therefore used along with arachidonic acid for studies of fibroblasts. Following incubation of fibroblasts in serum-free medium for 60 min, the distribution of arachidonic acid label in lipids was: phosphatidylcholine, 51%; phosphatidylethanolamine, 12%; phosphatidylinositol, 9.5%; and bis(monoacylglycero)phosphate, 2.3%; and of docosahexaenoic acid label was 36, 20, 2.6 and 10.3% respectively. Phosphatidylinositol had the highest specific activity of arachidonic acid label and bis(monoacylglycero)phosphate of docosahexaenoic acid label. Prolongation of incubation to 21 h, with or without removal of label remaining in the medium at 1 h, resulted in proportional redistributions with phosphatidylcholine decreasing and phosphatidylethanolamine increasing. In bis(monoacylglycero)phosphate and phosphatidylinositol, the proportions of arachidonic acid label decreased and increased respectively, whereas the proportions of docosahexaenoic acid label in these lipids were unchanged. As virtually all label taken up by cells was esterified, these redistributions are taken to reflect transacylations. In Niemann-Pick cells, the expected redistribution of arachidonic acid label in bis(monoacylglycero)phosphate failed to occur with cell types A and B which are deficient in sphingomyelinase-phospholipase C, and excess label accumulated after a 21-h incubation. Excess docosahexaenoic acid label also accumulated in the bis(monoacylglycero)phosphate of these cells. The highly selective incorporation of docosahexaenoic acid in two cell types suggests a special role for bis(monoacylglycero)phosphate in the metabolism of n-3 polyunsaturated fatty acids. A high specific activity found early in incubations of macrophages suggests that polyunsaturated fatty acids may be incorporated into phospholipids during de novo synthesis of phosphatidic acid.  相似文献   

14.
Desaturase and elongase are two key enzyme categories in the long-chain polyunsaturated fatty acid (LCPUFA) pathway that convert dietary α-linolenic acid (18:3n-3) to docosahexaenoic acid (22:6n-3). The Δ6 desaturase is considered as rate limiting in the conversion. In a previous study in barramundi we demonstrated that the desaturase had a low Δ6 activity but noted that the enzyme also possessed Δ8 ability that utilised 20-carbon fatty acids. This observation suggests that an alternative pathway may exist in the barramundi via elongases to form 20-carbon metabolites from 18:3n-3 to 20:3n-3 and then Δ6/8 desaturase to 20:4n-3. Cloning of the barramundi elongation of very long-chain fatty acid gene (ELOVL) and heterologous expression of the corresponding elongase were performed to examine activity with regard to time course, substrate concentration and substrate preference. Results revealed that the barramundi elongase showed a broad range of substrate specificity including 18-carbon PUFA (including 18:3n-3 and 18:2n-6), 20- and 22-carbon LCPUFA, with greater activity towards omega-3 (n-3) than n-6 fatty acids. The findings from this study provide molecular evidence for an alternative n-3 fatty acid elongation pathway utilising 18:3n-3 in barramundi.  相似文献   

15.
We investigated the mechanism by which rat retina conserves docosahexaenoic acid during essential fatty acid deficiency. Weanling female albino rats were fed diets containing either 10% by weight hydrogenated coconut oil, safflower oil, or linseed oil for 15 weeks. Plasma and rod outer segment (ROS) membranes were prepared for fatty acid and phospholipid molecular species analysis. In addition, retinas were removed for morphometric analysis. We found the following: (1) Plasma phospholipids and cholesterol esters from coconut oil, safflower oil, and linseed oil diet groups were enriched in 20:3(n-9), 20:4(n-6), and 20:5(n-3), respectively. The levels of these 20-carbon fatty acids in the ROS, however, were only slightly affected by diet. (2) The fatty acids and molecular species of ROS phospholipids from the safflower oil and coconut oil groups showed a selective replacement of 22:6(n-3) with 22:5(n-6), as evidenced by a reduction of the 22:6(n-3)-22:6(n-3) molecular species and an increase in the 22:5(n-6)-22:6(n-3) species. (3) The renewal rate of ROS integral proteins, determined by autoradiography, was 10% per day for each diet group. (4) Morphometric analysis of retinas showed no differences in the outer nuclear layer area or in ROS length between the three groups. We conclude that the conservation of 22:6(n-3) in ROS is not accomplished through reductions in the rate of membrane turnover, the total amount of ROS membranes, or in the number of rod cells. The retina may conserve 22:6(n-3) through recycling within the retina or between the retina and the pigment epithelium, or through the selective uptake of 22-carbon polyunsaturated fatty acids from the circulation.  相似文献   

16.
Eighteen healthy volunteers consumed very low fat diets (less than 7% of daily energy) enriched with different sources of long chain (C20 and C22) polyunsaturated fatty acids (PUFA). Three diets provided 500 g/day of fish caught in the tropical waters of Australia (rich in arachidonic acid and docosahexaenoic acid), fish caught in the southern waters of Australia (rich in docosahexaenoic acid), or kangaroo meat (rich in linoleic and arachidonic acids). The fourth diet was vegetarian, similarly low in fat but containing no 20- and 22-carbon PUFA. An increase in the percentage of a particular C20 or C22 PUFA in the plasma phospholipid fraction in subjects consuming these low fat diets corresponded to the dietary PUFA composition. This study examined the effect of dietary modification of the level of arachidonic acid in plasma phospholipids on both traditional measures of platelet function and on cold-induced vasoconstriction. The cold pressor response, measured by venous occlusion plethysmography, was depressed in diets which elevated the levels of arachidonic acid in plasma lipids (kangaroo and tropical fish), enhanced after subjects consumed a diet which increased the levels of docosahexaenoic acid and eicosapentaenoic acid (southern fish diet), and was unchanged by the low fat vegetarian diet. There was no effect on bleeding time or platelet responsiveness.  相似文献   

17.
The generation of oxygenated products from arachidonic acid and docosahexaenoic acid by the n-9 lipoxygenase of trout gill was monitored as a function of substrate concentration and added glutathione. In the absence of added glutathione up to 50% of the substrate consumed by the lipoxygenase was ultimately converted non-enzymatically to trihydroxy derivatives of the initial n-9 hydroperoxide enzyme product. The presence of added glutathione progressively increased conversion of the respective fatty acid hydroperoxides to the n-9 monohydroxy derivatives of arachidonic and docosahexaenoic acids while concomitantly decreasing the yield of trihydroxy derivatives, consistent with its role as a cosubstrate in the peroxidase reaction. The stability and net turnover of the lipoxygenase were also significantly improved by the addition of glutathione. The relative distribution of monohydroxy and trihydroxy products from either arachidonic acid or docosahexaenoic acid were similarly affected and equally sensitive to the glutathione concentration. These data suggest that in animals, the hydroperoxides of n-6 and n-3 polyunsaturated fatty acids generated by lipoxygenases are equally metabolized by the peroxide scavenging capabilities of the tissue.  相似文献   

18.
We compared the fatty acid compositions and gains of whole body triacylglycerols (TAG) and phospholipids (PL) in anadromous and landlocked Atlantic salmon (Salmo salar) fry, of the same age, fed the same commercial marine oil-rich diet over a 42-day feeding trial. The landlocked strain exhibited significantly (P<0.05) higher growth rate and feed efficiency, due principally to a higher fat retention, particularly of monounsaturated and saturated fatty acids (SFA). n-3 and n-6 long-chain polyunsaturated fatty acid (PUFA) gains and retentions were significantly higher (P<0.05) in the landlocked fry. Great similarities were found in the fatty acid profiles of whole body TAG of both strains. However, marked genotypic differences were observed in the PUFA profiles of whole body PL fractions. The total PUFA, n-3 PUFA and docosahexaenoic acid (DHA) level in PL was significantly higher (P<0.05) while the SFA level, and the PUFA C18/C20 and eicosapentaenoic acid/arachidonic acid ratios were significantly lower (P<0.05) in the anadromous fry than in landlocked fry. Our results indicate that the level of DHA in salmon PL is under strong genetic control and that the capacity for incorporation, and possibly for the conversion of dietary n-3 and n-6 PUFA, is higher in the landlocked strain.  相似文献   

19.
Abstract: The biochemical and morphological effects of polyunsaturated fatty acids on fetal brain cells grown in a chemically defined medium were studied. Fetal brain cells were dissociated from mouse cerebral hemispheres taken on the 16th day of gestation. After cells had grown in chemically defined medium for 8 days, the proportion of polyunsaturated fatty acids of cultured cells was only one-half of that observed at day 0 and about 1.5 times less than that of cells grown in serum-supplemented medium. Fatty acid 20:3(n-9) was present in cultured cells grown in either chemically defined or serum-supple-mented medium. demonstrating the deficiency of essential fatty acids. The reduced amount of polyunsaturated fatty acids in cells grown in the chemically defined medium was balanced by an increase in monounsaturated fatty acids. The saturated fatty acids were not affected. When added at the seeding time, linoleic, linolenic, arachidonic, or docosahexaenoic acid stimulated the proliferation of small dense cells. Besides, we demonstrate that each of the four fatty acids studied was incorporated into phospholipids. Adding fatty acids of the n-6 series increased the content of n-6 fatty acids in the cells, but also provoked an increase in the n-3 fatty acids. Among several combinations of fatty acids, only 20:4 and 22:6, when added to the culture in a ratio of 2:1, restored a fatty acid profile similar to controls (i.e. in vivo tissue taken at post- natal dav 5).  相似文献   

20.
A methodological problem with the normal phase high performance liquid chromatography (HPLC) of hydroxylated products of docosahexaenoic and arachidonic acids is described. Diacylglycerols present in lipid extracts of rat retina co-elute with monohydroxy derivatives of docosahexaenoic or arachidonic acid, when samples are applied to uPorosil columns and eluted with hexane/isopropanol/acetic acid. Analysis of fatty acid composition of diacylglycerols which were acetone-extracted from the incubation medium showed a profile similar to diacylglycerols extracted from the tissue by hexane/isopropanol, although acetone extraction resulted in extremely variable recovery of diacylglycerols. This co-elution of diacylglycerols with monohydroxy polyunsaturated fatty acids can lead to a significant error in estimation of lipoxygenation activity by conversion of radiolabeled precursors, because the incorporation of fatty acids into diacylglycerols is very active in many tissues. An alternative extraction method and reverse phase HPLC procedures that result in the complete separation of hydroxy fatty acids and diacylglycerols are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号