首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
W Zhou  L J Parent  J W Wills    M D Resh 《Journal of virology》1994,68(4):2556-2569
Retroviral Gag proteins are targeted to the plasma membrane, where they play the central role in virion formation. Several studies have suggested that the membrane-binding signal is contained within the amino-terminal matrix sequence; however, the precise location has never been determined for the Gag protein of any retrovirus. In this report, we show that the first 31 residues of human immunodeficiency virus type 1 Gag protein can function independently as a membrane-targeting domain when fused to heterologous proteins. A bipartite membrane-targeting motif was identified, consisting of the myristylated N-terminal 14 amino acids and a highly basic region that binds acidic phospholipids. Replacement of the N-terminal membrane-targeting domain of pp60v-src with that of human immunodeficiency virus type 1 Gag elicits efficient membrane binding and a transforming phenotype. Removal of myristate or the basic region results in decreased membrane binding of Gag-Src chimeras in vitro and impaired virion formation by Pr55gag in vivo. We propose that the N-terminal Gag sequence functions as a targeting signal to direct interaction with acidic phospholipids on the cytoplasmic leaflet of the plasma membrane.  相似文献   

2.
Targeting of the human immunodeficiency virus type 1 (HIV-1) Gag precursor Pr55(gag) to the plasma membrane, the site of virus assembly, is primarily mediated by the N-terminal matrix (MA) domain. N-myristylation of MA is essential for the stable association of Pr55(gag) with membranes and for virus assembly. We now show that single amino acid substitutions near the N terminus of MA can dramatically impair assembly without compromising myristylation. Subcellular fractionation demonstrated that Gag membrane binding was compromised to a similar extent as in the absence of the myristyl acceptor site, indicating that the myristyl group was not available for membrane insertion. Remarkably, the effects of the N-terminal modifications could be completely suppressed by second-site mutations in the globular core of MA. The compensatory mutations enhanced Gag membrane binding and increased viral particle yields above wild-type levels, consistent with an increase in the exposure of the myristyl group. Our results support a model in which the compact globular core of MA sequesters the myristyl group to prevent aberrant binding to intracellular membranes, while the N terminus is critical to allow the controlled exposure of the myristyl group for insertion into the plasma membrane.  相似文献   

3.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Pr55Gag molecule with the plasma membrane of an infected cell is an essential step of the viral life cycle. Myristic acid and positively charged residues within the N-terminal portion of MA constitute the membrane-binding domain of Pr55Gag. A separate assembly domain, termed the interaction (I) domain, is located nearer the C-terminal end of the molecule. The I domain is required for production of dense retroviral particles, but has not previously been described to influence the efficiency of membrane binding or the subcellular distribution of Gag. This study used a series of Gag-green fluorescent protein fusion constructs to define a region outside of MA which determines efficient plasma membrane interaction. This function was mapped to the nucleocapsid (NC) region of Gag. The minimal region in a series of C-terminally truncated Gag proteins conferring plasma membrane fluorescence was identified as the N-terminal 14 amino acids of NC. This same region was sufficient to create a density shift in released retrovirus-like particles from 1.13 to 1.17 g/ml. The functional assembly domain previously termed the I domain is thus required for the efficient plasma membrane binding of Gag, in addition to its role in determining the density of released particles. We propose a model in which the I domain facilitates the interaction of the N-terminal membrane-binding domain of Pr55Gag with the plasma membrane.  相似文献   

4.
Ono A  Freed EO 《Journal of virology》1999,73(5):4136-4144
Binding of the human immunodeficiency virus type 1 (HIV-1) Gag protein precursor, Pr55(Gag), to membrane is an indispensable step in virus assembly. Previously, we reported that a matrix (MA) residue 6 substitution (6VR) imposed a virus assembly defect similar to that observed with myristylation-defective mutants, suggesting that the 6VR change impaired membrane binding. Intriguingly, the 6VR mutation had no effect on Gag myristylation. The defective phenotype imposed by 6VR was reversed by changes at other positions in MA, including residue 97. In this study, we use several biochemical methods to demonstrate that the residue 6 mutation, as well as additional substitutions in MA amino acids 7 and 8, reduce membrane binding without affecting N-terminal myristylation. This effect is observed in the context of Pr55(Gag), a truncated Gag containing only MA and CA, and in MA itself. The membrane binding defect imposed by the 6VR mutation is reversed by second-site changes in MA residues 20 and 97, both of which, when present alone, increase membrane binding to levels greater than those for the wild type. Both reduced and enhanced membrane binding imposed by the MA substitutions depend upon the presence of the N-terminal myristate. The results support the myristyl switch model recently proposed for the regulation of Gag membrane binding, according to which membrane binding is determined by the degree of exposure or sequestration of the N-terminal myristate moiety. Alternatively, insertion of the myristate into the lipid bilayer might be a prerequisite event for the function of other distinct MA-encoded membrane binding domains.  相似文献   

5.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

6.
The Gag proteins of Rous sarcoma virus and human immunodeficiency virus (HIV) each contain a function involved in a late step in budding, defects in which result in the accumulation of these molecules at the plasma membrane. In the Rous sarcoma virus Gag protein (Pr76gag), this assembly domain is associated with a PPPY motif, which is located at an internal position between the MA and CA sequences. This motif is not contained anywhere within the HIV Gag protein (Pr55gag), and the MA sequence is linked directly to CA. Instead, a late assembly function of HIV has been associated with the p6 sequence situated at the C terminus of Gag. Here we demonstrate the remarkable finding that the late assembly domains from these two unrelated Gag proteins are exchangeable between retroviruses and can function in a positionally independent manner.  相似文献   

7.
Myristoylation of the Pr65gag protein from Moloney murine leukemia virus has been shown to be essential for virus particle formation [Rein et al., Proc. Natl. Acad. Sci. USA 83 (1986) 7246-7250], and by analogy, myristoylation of the human immunodeficiency virus (HIV) Gag precursor could possibly play a similar role. We have investigated the expression and myristoylation of the complete HIV Gag precursor Pr55gag in yeast, the subcellular localization of that protein, and the contribution of the myristoyl-glycine residue to this localization. Immunogold labelling of myristoylated Pr55gage with antibodies directed against HIV Gag products was apparent in the vicinity of the plasma membrane. On the contrary, non-myristoylated derivatives of Pr55gag were only detected in relatively well-defined regions of the cytoplasm. These results show that targeting and accumulation of the HIV Gag precursor, Pr55gag, at the plasma membrane occurs in yeast in the absence of other viral components and requires the N-myristoyl-glycine residue.  相似文献   

8.
During retrovirus assembly, Gag proteins bind to the inner leaflet of the plasma membrane to initiate the budding process. The molecular basis of this protein-lipid interaction is poorly understood. For the human, immunodeficiency virus type 1 Gag protein, we recently reported that the membrane-binding domain resides within the N-terminal 31 amino acids and consists of two components: myristate and a cluster of basic residues, which together promote membrane binding in vitro and budding in vivo (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). The positively charged residues associate electrostatically with acidic phospholipids to stabilize membrane binding, while myristate provides membrane-binding energy via hydrophobic interactions. Here we demonstrate that the human immunodeficiency virus type 1 Gag membrane-binding domain can fully replace the membrane-targeting function of the N-terminal 100 residues of the non-myristylated Rous sarcoma virus (RSV) Gag protein. To further explore the importance of myristate and basic residues in membrane binding, we developed a gain-of-function assay whereby budding was restored to defective mutants of RSV Gag. Detailed mutational analysis revealed that the position, number, and context of charged residues are crucial to budding. Myristate provides additional membrane-binding energy, which is critical when a Gag protein is near the threshold of stable membrane association. Finally, viruses with altered matrix (MA) proteins that are noninfectious, even though they produce particles with high efficiency, were identified. Thus, we present the first evidence that the RSV MA sequence plays two distinct roles, membrane binding during particle assembly and a second, as yet undefined function required for viral infectivity.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) Pr55gag gene product directs the assembly of virions at the inner surface of the cell plasma membrane. The specificity of plasma membrane binding by Pr55gag is conferred by a combination of an N-terminal myristoyl moiety and a basic residue-rich domain. Although the myristate plus basic domain is also present in the p17MA proteolytic product formed upon Pr55gag maturation, the ability of p17MA to bind to membranes is significantly reduced. It was previously reported that the reduced membrane binding of p17MA was due to sequestration of the myristate moiety by a myristoyl switch (W. Zhou and M. D. Resh, J. Virol. 70:8540–8548, 1996). Here we demonstrate directly that treatment of membrane-bound Pr55gag in situ with HIV-1 protease generates p17MA, which is then released from the membrane. Pr55gag was synthesized in reticulocyte lysates, bound to membranes, and incubated with purified HIV-1 protease. The p17MA product in the membrane-bound and soluble fractions was analyzed following proteolysis. Newly generated p17MA initially was membrane bound but then displayed a slow, time-dependent dissociation resulting in 65% solubilization. Residual p17MA could be extracted from the membranes with either high pH or high salt. Treatment of membranes from transfected COS-1 cells with protease revealed that Pr55gag was present within sealed membrane vesicles and that the release of p17MA occurred only when detergent and salt were added. We present a model proposing that the HIV-1 protease is the “trigger” for a myristoyl switch mechanism that modulates the membrane associations of Pr55gag and p17MA in virions and membranes.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6(Gag) or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.  相似文献   

11.
Assembly of human immunodeficiency virus type 1 (HIV-1) is directed by the viral core protein Pr55gag. Depending on the cell type, Pr55gag accumulates either at the plasma membrane or on late endosomes/multivesicular bodies. Intracellular localization of Pr55gag determines the site of virus assembly, but molecular mechanisms that define cell surface or endosomal targeting of Pr55gag are poorly characterized. We have analyzed targeting of newly synthesized Pr55gag in HeLa H1 cells by pulse-chase studies and subcellular fractionations. Our results indicated that Pr55gag was inserted into the plasma membrane and, when coexpressed with the viral accessory protein Vpu, Pr55gag remained at the plasma membrane and virions assembled at this site. In contrast, Pr55gag expressed in the absence of Vpu was initially inserted into the plasma membrane, but subsequently endocytosed, and virus assembly was partially shifted to internal membranes. This endocytosis of Pr55gag required the host protein Tsg101. These results identified a previously unknown role for Vpu and Tsg101 as regulators for the endocytic uptake of Pr55gag and suggested that the site of HIV-1 assembly is determined by factors that regulate the endocytosis of Pr55gag.  相似文献   

12.
The role of the matrix protein (MA) of human immunodeficiency virus type 1 in intracellular transport, assembly, and extracellular release of Gag polyprotein precursor (Pr55gag) was investigated by deletion mutagenesis of the MA domain of recombinant Gag precursor expressed in baculovirus-infected cells. In addition, three carboxy-terminally truncated forms of the Gag precursor, representing mainly the MA, were constructed. One corresponded to an MA with a deletion of its last 12 residues (amb120), while the others corresponded to the entire MA with an additional sequence from the N-terminal portion of the CA (amb143 and och180). Deletions within the MA central region (residues 41 to 78) appeared to be detrimental to Gag particle assembly and budding from the plasma membrane. A slightly narrower domain, between amino acids 41 and 68, was found to be critical for soluble Gag secretion. Mutations which totally or partially deleted one or the other of the two polybasic signals altered the transport of N-myristylated Gag precursor to the plasma membrane. In coexpression with wild-type Gag precursor, a discrete trans-dominant negative effect on wild-type Gag particle assembly and release was observed with deletion mutants located in the central MA region (residues 41 to 78). A more significant negative effect was obtained with the two recombinant proteins of amb120 and och180, which redirected the Gag particle assembly pathway from the plasma membrane compartment to intracellular vesicles (amb120) and to the nuclear compartment (och180).  相似文献   

13.
Human immunodeficiency virus type 1 particles form by budding at the surface of most cell types. In this process, a piece of the plasma membrane is modified into an enveloped virus particle. The process is driven by the internal viral protein Pr55(gag). We have studied how host proteins in the membrane are dealt with by Pr55(gag) during budding. Are they included in or excluded from the particle? The question was approached by measuring the relative concentrations of host and viral proteins in the envelope of Pr55(gag) particles and in their donor membranes in the cell. We observed that the bulk of the host proteins, including actin and clathrin, were passively included into the virus-like Gag particles. This result suggests that budding by Pr55(gag) proceeds without significant alteration of the original host protein composition at the cell membrane. Nevertheless, some proteins were concentrated in the particles, and a few were excluded. The concentrated proteins included cyclophilin A and Tsg-101. These were recruited to the plasma membrane by Pr55(gag). The membrane-bound cyclophilin A was concentrated into particles as efficiently as Pr55(gag), whereas Tsg-101 was concentrated more efficiently. The latter finding is consistent with a role for Tsg-101 in Gag particle release.  相似文献   

14.
15.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

16.
The human immunodeficiency virus type 1 gag gene product Pr55gag self-assembles when expressed on its own in a variety of eukaryotic systems. Assembly in T lymphocytes has not previously been studied, nor is it clear whether Pr55gag particles can package genomic RNA or if the Gag-Pol polyprotein is required. We have used a series of constructs that express Gag or Gag-Pol proteins with or without the viral protease in transient transfections in COS-1 cells and also expressed stably in CD4+ T cells to study this. Deletion of the p6 domain at the C terminus of protease-negative Pr55gag did not abolish particle release, while truncation of the nucleocapsid protein reduced it significantly, particularly in lymphocytes. Gag-Pol polyprotein was released from T cells in the absence of Pr55gag but did not encapsidate RNA. Pr55gag encapsidated human immunodeficiency virus type 1 RNA whether expressed in a protease-positive or protease-negative context. p6 was dispensable for RNA encapsidation. Marked differences in the level of RNA export were noted between the different cell lines.  相似文献   

17.
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.  相似文献   

18.
The bovine immunodeficiency virus (BIV) gag gene encodes a 53-kDa precursor (Pr53gag) that is involved in virus particle assembly and is further processed into the putative matrix (MA), capsid (CA), and nucleocapsid (NC) functional domains in the mature virus. Gag determinants are also found in the Gag-Pol polyprotein precursor. To immunologically identify the major precursors and processed products of the BIV gag gene, monospecific rabbit sera to recombinant BIV MA protein and Pr53gag and peptides predicted to correspond to the CA and NC proteins and the MA-CA cleavage site were developed and used in immunoprecipitations and immunoblots of BIV antigens. Monospecific antisera to native and recombinant human immunodeficiency virus type 1 proteins were also used to identify analogous BIV Gag proteins and to determine whether cross-reactive epitopes were present in the BIV Gag precursors or processed products. The BIV MA, CA, and NC Gag proteins were identified as p16, p26, and p13, respectively. In addition to BIV Pr53gag, the major Gag precursor, two other Gag-related precursors of 170 and 49 kDa were identified that have been designated pPr170gag-pol and Pr49gag, respectively; pPr170gag-pol is the Gag-Pol polyprotein precursor, and Pr49gag is the transframe Gag precursor present in pPr170gag-pol. Several alternative Gag cleavage products were also observed, including p23, which contains CA and NC determinants, and p10, which contains a peptide sequence conserved in the CA proteins of most lentiviruses. The monospecific antisera to human immunodeficiency virus type 1 CA (p24) and NC (p7) proteins showed cross-reactivity to and aided in the identification of analogous BIV proteins. Based on the present data, a scheme for the processing of BIV Gag precursors is proposed.  相似文献   

19.
P P Lee  M L Linial 《Journal of virology》1994,68(10):6644-6654
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.  相似文献   

20.
Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affinity despite having a deletion of the fourth alpha-helix of the M domain. Examination of the mutant protein's subcellular distribution revealed that it was not localized to the plasma membrane but instead was mistargeted to intracytoplasmic membranes. Specific plasma membrane targeting was restored by the addition of myristate plus a single basic residue, by multiple basic residues, or by the heterologous hydrophobic membrane-binding domain from the cellular Fyn protein. These results suggest that the fourth alpha-helix of the RSV M domain promotes specific targeting of Gag to the plasma membrane, either through a direct interaction with plasma membrane phospholipids or a membrane-associated cellular factor or by maintaining the conformation of Gag to expose specific plasma membrane targeting sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号