首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence lifetimes of a number of membrane probes based on the 1,6-diphenylhexatriene (DPH) chromophore have been measured in small unilamellar phospholipid vesicles and found to be multiphasic. These probes were quenched by sodium iodide with different efficiencies in vesicles and this has been attributed to the depth of the particular probe in the bilayer. The distribution of the probe between the outer and inner monolayer has been determined for those probes with fixed positions in the bilayer. The iodide ion permeability of the bilayer was found to be immeasurably small over a 3 h period.  相似文献   

2.
1. The action of the antibiotics enniatin A, valinomycin, the actin homologues, gramicidin, nigericin and dianemycin on mitochondria, erythrocytes and smectic mesophases of lecithin–dicetyl hydrogen phosphate was studied. 2. These antibiotics induced permeability to alkali-metal cations on all three membrane systems. 3. The ion specificity on each membrane system was the same. 4. Enniatin A, valinomycin and the actins did not induce permeability to protons, whereas nigericin and dianemycin rendered all three membrane systems freely permeable to protons. 5. Several differences were noted between permeability induced by nigericin and that induced by gramicidin. 6. The action of all these antibiotics on mitochondrial respiration could be accounted for by changes in passive ion permeability of the mitochondrial membrane similar to those induced in erythrocytes and phospholipid membranes, if it is assumed that a membrane potential is present in respiring mitochondria.  相似文献   

3.
Teorell's fixed charge theory for membrane ion permeability was utilized to calculate specific ionic permeabilities from measurements of membrane potential, conductance, and specific ionic transference numbers. The results were compared with the passive ionic conductances calculated from the branched equivalent circuit membrane model of Hodgkin Huxley. Ionic permeabilities for potassium, sodium, and chloride of crayfish (Procambarus clarkii) medial giant axons were examined over an external pH range from 3.8 to 11.4. Action potentials were obtained over this pH range. Failures occurred below pH 3.8 during protonation of membrane phospholipid phosphate and carboxyl, and above pH 11.4 from calcium precipitation. In general, chloride permeability increases with membrane protonation, while cation permeability decreases. At pH 7.0, PK = 1.33 X 10(-5), PCl = 1.49 X 10(-6), PNa = 1.92 X 10(-8) cm/s. PK: PCl: PNa = 693:78:1. PCl is zero above pH 10.6 and is opened predominately by protonation of epsilon-amino, and partially by tyrosine and sulfhydryl groups from pH 10.6 to 9. PK is activated in part by ionization of phospholipid phosphate and carboxyl around pH 4, then further by imidazole from pH 5 to 7, and then predominately from pH 7 to 9 by most probably phosphatidic acid. PNa permeability parallels that of potassium from pH 5 to 9.4. Below pH 5 and above pH 9.4, PNa increases while PK decreases. Evidence was obtained that these ions possibly share common passive permeable channels. The data best support the theory of Teorell, that membrane fixed charges regulate permiability and that essentially every membrane ionizable group appears involved in various amounts in ionic permeability control.  相似文献   

4.
In summary, we have shown that the conventional explanation for the site of action of a ligand which alters the conductance of a membrane ion channel is that the ligand interacts or binds with the ion channel protein, changing its conductance, is inadequate to explain the primary site of action of the antiarrhythmic n-3 PUFAs. We have shown that when a neutral asparagine is replaced by a positively charged lysine in the N406 amino acid site in the alpha-subunit of the human cardiac sodium channel, the n-3 fatty acids lose their inhibitory action on the sodium current. The inadequacy of this finding to explain the primary site of action of the n-3 PUFAs is demonstrated by the inhibitory effect on all other cardiac ion channels, so far tested. We show that ion channels, which share no amino acid homology with the PUFAs, have their conductance also reduced in the presence of the PUFAs, Thus a more general conceptual framework or paradigm is needed to account for the broad action of the PUFAs on diverse different ion channels lacking amino acid homology. We have been testing the membrane tension hypothesis of Andersen and associates. According to this hypothesis, the fatty acids are not acting directly on the ion channel protein but accumulating in the phospholipid membrane in immediate juxtaposition to the site in the membrane where the ion channel protein penetrates the membrane phospholipid bilayer. This alters membrane tensions exerted by the phospholipid membrane on the ion channel, which in turn causes conformational changes in the ion channel, altering the conductance of the ion channel. Our preliminary data seem to support this membrane tension hypothesis.  相似文献   

5.
The ionic permeability coefficients, ionic transference numbers, activation energy of ion transport and breakdown voltage of bilayer lipid membranes made from dioleoylphosphatidylcholine or its mixtures with dolichyl 12-phosphate have been studied. The electrical measurements showed that dolichyl phosphate in phospholipid bilayers decreases membrane permeability, changes membrane ionic selectivity and increases membrane stability. These results are discussed in light of the aggregation behavior and the intramolecular clustering of a dolichyl phosphate molecule in phospholipid membranes. From our data we suggest that the hydrophilic part of dolichyl phosphate molecules regulates their behavior in membranes.  相似文献   

6.
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state (31)P and (1)H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. (31)P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in (1)H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 degrees C and 24.0 degrees C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB.  相似文献   

7.
Diphtheria toxin (DT) in acidic media forms ion-conducting channels across the plasma membrane and inhibits protein synthesis of both highly and poorly DT-sensitive cell lines. This results in loss of cell potassium and in entry of both sodium and protons with a concomitant rapid lowering of membrane potential. The pH dependency of the permeability changes is similar to that of the inhibition of cell protein synthesis. DT-induced ion channels close when the pH of the external medium is returned to neutrality and cells recover their normal monovalent cation content. Similar permeability changes were induced by two DT mutants defective either in enzymatic activity or in cell binding, but not with a mutant defective in membrane translocation. The implication of these findings for the mechanism of DT membrane translocation is discussed.  相似文献   

8.
Light-driven potassium ion uptake in Halobacterium halobium is mediated by bacteriorhodopsin. This uptake is charge-balanced by sodium ions and not by proton release. Light-induced shifts in concentrations of divalent cations were found to be negligible. The transient changes in extracellular pH (alkaline overshoot) can be understood by the concomitant processes of ATP synthesis, proton/sodium exchange and potassium uptake. The driving force of potassium ion uptake is the membrane potential, no ATP-dependent potassium transport process is found. Fluorescence measurements indicate a high permeability of the membrane to potassium ions compared to sodium ions. Therefore the potassium ion diffusion potential contributes to the membrane potential (about 30 mV/decade) and thereby influences the ATP level. Sudden enhancement of the diffusion potential by the potassium ionophore monactin leads to the expected transient increase in cellular ATP level. Due to the large size (up to 100-fold) of the potassium ion gradient and its high capacity (intracellular concentration up to 3 M) the potassium ion gradient can well serve the cell as a long term storage form of energy.  相似文献   

9.
Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself.  相似文献   

10.
We have employed atomic-scale molecular dynamics simulations to address ion leakage through transient water pores in protein-free phospholipid membranes. Our results for phospholipid membranes in aqueous solution with NaCl and KCl salts show that the formation of transient water pores and the consequent ion leakage can be induced and be driven by a transmembrane ionic charge imbalance, an inherent feature in living cells. These processes take place if the gradient is large enough to develop a sufficiently significant potential difference across the membrane. The transport of cations and anions through the water pores is then seen; it discharges the transmembrane potential, considerably reduces the size of a water pore, and makes the water pore metastable, leading eventually to its sealing. The ion transport is found to be sensitive to the type of ions. It turns out that Na(+) and Cl(-) ions leak through a membrane at approximately the same ratio despite the fact that Na(+) ions are expected to experience a lower potential barrier for the permeation through the pore. This is because of strong interactions of sodium ions with the carbonyl region of a phospholipid membrane as well as with lipid headgroups forming pore "walls," considerably slowing down the permeation of sodium ions. In contrast, we observed a pronounced selectivity of a phospholipid membrane to the permeation of potassium ions as compared to chloride ions: Potassium ions, being larger than sodium ions, interact only weakly with phospholipid headgroups, so that these interactions are not able to compensate for a large difference in free-energy barriers for permeation of K(+) and Cl(-) ions. These findings are found to be robust to a choice of force-field parameters for ions (tested by Gromacs and Charmm force-fields for ions). What is more, a potassium ion is found to be able to permeate a membrane along an alternate, "water-defect-mediated" pathway without actual formation of a pore. The "water-defect-mediated" leakage involves formation of a single water defect only and is found to be at least one order of magnitude faster than the pore-mediated ion leakage.  相似文献   

11.
Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is the sole energy-coupling ion. To test whether sodium is the preferred coupling ion at high temperatures, the proton- and sodium permeability was determined in liposomes prepared from lipids isolated from various bacterial and archaeal species that differ in their optimal growth temperature. The proton permeability increased with the temperature and was comparable for most species at their respective growth temperatures. Liposomes of thermophilic bacteria are an exception in the sense that the proton permeability is already high at the growth temperature. In all liposomes, the sodium permeability was lower than the proton permeability and increased with the temperature. The results suggest that the proton permeability of the cytoplasmic membrane is an important parameter in determining the maximum growth temperature.  相似文献   

12.
13.
Membrane composition and ion-permeability in extremophiles   总被引:1,自引:0,他引:1  
Abstract: Protons and sodium ions are the only used coupling ions in energy transduction in Bacteria and Archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high as compared to sodium ions. In some thermophiles, therefore, sodium is the sole energy coupling ion. Comparison of the proton- and sodium permeability of the membranes of variety of bacterial and archaeal species that differ in their optimal growth temperature reveals that the permeation processes of protons and sodium ions must occur by different mechanisms. The proton permeability increases with the temperature, and has a comparable value for most species at their respective growth temperatures. The sodium permeability is lower than the proton permeability and increases also with the temperature, but is lipid independent. Therefore, it appears that for most bacteria the physical properties of the cytoplasmic membrane are optimised to ensure a low proton permeability at the respective growth temperature.  相似文献   

14.
A new mathematical model of ion movements in airway epithelia is presented, which allows predictions of ion fluxes, membrane potentials and ion concentrations. The model includes sodium and chloride channels in the apical membrane, a Na/K pump and a cotransport system for Cl- with stoichiometry Na+:K+:2Cl- in the basolateral membrane. Potassium channels in the basolateral membrane are used to regulate cell volume. Membrane potentials, ion fluxes and intracellular ion concentration are calculated as functions of apical ion permeabilities, the maximum pump current and the cotransport parameters. The major predictions of the model are: (1) Cl- concentration in the cell is determined entirely by the intracellular concentration of negatively charged impermeable ions and the osmotic conditions; (2) changes in intracellular Na+ and K+ concentrations are inversely related; (3) cotransport provides the major driving force for Cl- flux, increases intracellular Na+ concentration, decreases intracellular K+ concentration and hyperpolarizes the cell interior; (4) the maximum rate of the Na/K pump, by contrast, has little effect on Na+ or Cl- transepithelial fluxes and a much less pronounced effect on cell membrane polarization; (5) an increase in apical Na+ permeability causes an increase in intracellular Na+ concentration and a significant increase in Na+ flux; (6) an increase in apical Cl- permeability decreases intracellular Na+ concentration and Na+ flux; (7) assuming Na+ and Cl- permeabilities equal to those measured in human nasal epithelia, the model predicts that under short circuit conditions, Na+ absorption is much higher than Cl- secretion, in agreement with experimental measurements.  相似文献   

15.
The effect of the membrane potential on the pump current evoked by iontophoretic injection of sodium into the neuron and the effect of the intracellular sodium ion concentration on the potential dependence of the pump current were investigated by the voltage clamp method in isolated and semi-isolated neurons ofHelix pomatia andHelix italiana. The pump current was shown to change its direction in the presence of marked hyperpolarization of the membrane (by more than −80 to −120 mV). An increase in the intracellular sodium ion concentration following injection of excess ions into the neuron increases the potential dependence of the pump current. A possible connection between passive potassium permeability and the activity of the enzymic transport mechanism for the elimination of sodium from the cell is postulated.  相似文献   

16.
It is widely accepted that amphotericin B (AmB) together with sterol makes a mixed molecular assemblage in phospholipid membrane. By adding AmB to lipids prior to preparation of large unilamellar vesicles (LUV), we directly measured the effect of cholesterol on assemblage formation by AmB without a step of drug's binding to phospholipid bilayers. Potassium ion flux assays based on 31P-nuclear magnetic resonance (NMR) clearly demonstrated that cholesterol markedly inhibits ion permeability induced by membrane-bound AmB. This could be accounted for by a membrane-thickening effect of cholesterol since AmB actions are known to be markedly affected by the thickness of membrane. Upon addition of AmB to an LUV suspension, the ion flux gradually increased with increasing molar ratios of cholesterol up to 20 mol%. These biphasic effects of cholesterol could be accounted for, at least in part, by the ordering effect of cholesterol.  相似文献   

17.
Transmembrane pH gradients created across phospholipid vesicles give rise to time-dependent potentials as determined from the EPR spectra of phosphonium ion spin labels in the system. From the time-dependent spectra, the transmembrane H+/OH- current is obtained and hence the current-voltage curve for the vesicle membrane is obtained. The current-voltage curve is linear with a membrane resistance of 3 +/- 2 X 10(9) omega cm2 corresponding to a membrane permeability of 5 +/- 2 X 10(-7) cm/s. This unusually high permeability is further increased by small amounts of lipid oxidation, CHCl3 or the general anesthetic halothane.  相似文献   

18.
The localization of transport properties in the frog lens.   总被引:1,自引:1,他引:0       下载免费PDF全文
The selectivity of fiber-cell membranes and surface-cell membranes in the frog lens is examined using a combination of ion substitutions and impedance studies. We replace bath sodium and chloride, one at a time, with less permeant substitute ions and we increase bath potassium at the expense of sodium. We then record the time course and steady-state value of the intracellular potential. Once a new steady state has been reached, we perform a small signal-frequency-domain impedance study. The impedance study allows us to separately determine the values of inner fiber-cell membrane conductance and surface-cell membrane conductance. If a membrane is permeable to a particular ion, we presume that the conductance of that membrane will change with the concentration of the permeant ion. Thus, the impedance studies allow us to localize the site of permeability to inner or surface membranes. Similarly, the time course of the change in intracellular potential will be rapid if surface membranes are the site of permeation whereas it will be slow if the new solution has to diffuse into the intercellular space to cause voltage changes. Lastly, the value of steady-state voltage change provides an estimate of the lens' permeability, at least for chloride and potassium. The results for sodium are complex and not well understood. From the above studies we conclude: (a) surface membranes are dominated by potassium permeability; (b) inner fiber-cell membranes are permeable to sodium and chloride, in approximately equal amounts; and (c) inner fiber-cell membranes have a rather small permeability to potassium.  相似文献   

19.
It is widely accepted that amphotericin B (AmB) together with sterol makes a mixed molecular assemblage in phospholipid membrane. By adding AmB to lipids prior to preparation of large unilamellar vesicles (LUV), we directly measured the effect of cholesterol on assemblage formation by AmB without a step of drug's binding to phospholipid bilayers. Potassium ion flux assays based on 31P-nuclear magnetic resonance (NMR) clearly demonstrated that cholesterol markedly inhibits ion permeability induced by membrane-bound AmB. This could be accounted for by a membrane-thickening effect of cholesterol since AmB actions are known to be markedly affected by the thickness of membrane. Upon addition of AmB to an LUV suspension, the ion flux gradually increased with increasing molar ratios of cholesterol up to 20 mol%. These biphasic effects of cholesterol could be accounted for, at least in part, by the ordering effect of cholesterol.  相似文献   

20.
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state 31P and 1H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. 31P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in 1H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 °C and 24.0 °C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号