首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA+ ATPase, ClpV. The T6SS secretes two categories of proteins, VgrG and Hcp. Hcp is structurally similar to a phage tail tube component, whereas VgrG proteins show similarity to the puncturing device at the tip of the phage tube. In P. aeruginosa, three T6SSs are known. The expression of H1-T6SS genes is controlled by the RetS sensor. Here, 10 vgrG genes were identified in the PAO1 genome, among which three are co-regulated with H1-T6SS, namely vgrG1a/b/c. Whereas VgrG1a and VgrG1c were secreted in a ClpV1-dependent manner, secretion of VgrG1b was ClpV1-independent. We show that VgrG1a and VgrG1c form multimers, which confirmed the VgrG model predicting trimers similar to the tail spike. We demonstrate that Hcp1 secretion requires either VgrG1a or VgrG1c, which may act independently to puncture the bacterial envelope and give Hcp1 access to the surface. VgrG1b is not required for Hcp1 secretion. Thus, VgrG1b does not require H1-T6SS for secretion nor does H1-T6SS require VgrG1b for its function. Finally, we show that VgrG proteins are required for secretion of a genuine H1-T6SS substrate, Tse3. Our results demonstrate that VgrG proteins are not only secreted components but are essential for secretion of other T6SS substrates. Overall, we emphasize variability in behavior of three P. aeruginosa VgrGs, suggesting that, although very similar, distinct VgrGs achieve specific functions.  相似文献   

5.
Pseudomonas aeruginosa is a free-living and common environmental bacterium. It is an opportunistic and nosocomial pathogen causing serious human health problems. To overcome its predators, such as macrophages and environmental phagocytes, it utilises different survival strategies, such as the formation of microcolonies and the production of toxins mediated by a type III secretion system (TTSS). The aim of this study was to examine interaction of TTSS effector proteins of P. aeruginosa PA103 with Acanthamoeba castellanii by co-cultivation, viable count, eosin staining, electron microscopy, apoptosis assay, and statistical analysis. The results showed that P. aeruginosa PA103 induced necrosis and apoptosis to kill A. castellanii by the effects of TTSS effector proteins ExoU, ExoS, ExoT, and ExoY. In comparison, Acanthamoeba cultured alone and co-cultured with P. aeruginosa PA103 lacking the known four TTSS effector proteins were not killed. The results are consistent with P. aeruginosa being a strict extracellular bacterium that needs TTSS to survive in the environment, because the TTSS effector proteins are able to kill its eukaryotic predators, such as Acanthamoeba.  相似文献   

6.
7.
《Current biology : CB》2014,24(17):R784-R791
  相似文献   

8.
Type III protein secretion in Pseudomonas syringae   总被引:1,自引:0,他引:1  
The type III secretion system is an essential virulence system used by many Gram-negative bacterial pathogens to deliver effector proteins into host cells. This review summarizes recent advancements in the understanding of the type III secretion system of Pseudomonas syringae, including regulation of the type III secretion genes, assembly of the Hrp pilus, secretion signals, the putative type III effectors identified to date, and their virulence action after translocation into plant cells.  相似文献   

9.
The Escherichia coli system is the system of choice for recombinant protein production because it is possible to obtain a high protein yield in inexpensive media. The accumulation of protein in an insoluble form in inclusion bodies remains a major disadvantage. Use of the Pseudomonas aeruginosa type III secretion system can avoid this problem, allowing the production of soluble secreted proteins.  相似文献   

10.
11.
12.
13.
【目的】进一步研究III型分泌系统(Type III secretion system, TTSS)抑制剂对条件致病菌Pseudomonas aeruginosa PAO1的TTSS相关蛋白、鞭毛和纤毛等主要毒性因子的影响,评估TTSS抑制剂的防治效果及潜在风险。【方法】构建TTSS效应蛋白合成基因exoY和exoT转录报告质粒pAT-exoY、pAT-exoT,并将其转入菌株PAO1中。菌株PAO1(pAT-exoY)、PAO1(pAT-exoT) 与TTSS抑制剂共同培养后,检测exoY和exoT的表达。通过SDS-PAGE检测TTSS抑制剂对鞭毛结构蛋白FliC的影响。将PAO1单菌落穿刺接种于含有TTSS抑制剂的1%琼脂糖平板,观察细菌纤毛介导的蹭行运动(Twitching motility)。【结果】转录报告实验结果表明4个TTSS抑制剂可显著抑制exoY和exoT的转录;化合物TS52、TS53和TS94虽不影响胞内TTSS针状顶端结构蛋白PcrV的产量,但可抑制PcrV蛋白的胞外运输。化合物TS53可降低鞭毛结构蛋白FliC的产生。另外,化合物TS52、TS53和TS88可降低菌株PAO1的蹭行运动能力,但TS94可提高菌株PAO1的这种运动能力。【结论】TTSS抑制剂除通过抑制TTSS表达外,还可能通过影响其它毒性因子如鞭毛的合成、IV型分泌系统介导的蹭行运动等方式影响菌株PAO1致病性。  相似文献   

14.
15.
16.
17.
Type III secretion-mediated cytotoxicity is one of the key virulence mechanisms of the opportunistic pathogen Pseudomonas aeruginosa. Prior data from several laboratories have established that metabolism is a key factor in the regulation of type III secretion gene expression in P. aeruginosa. Here we use a fluorescence-activated cell sorter (FACS)-based approach to investigate expression of type III secretion genes at a single-cell level. The data demonstrate that the metabolic state regulates the percentage of cells that are able to induce type III secretion gene expression under inducing conditions. We also present evidence that this regulation is the result of an effect of the growth conditions on the ability of P. aeruginosa to assemble a functional type III secretion apparatus. Preliminary data suggest that the metabolite that controls type III secretion gene expression is derived from acetyl-CoA and that this regulation may, in part, be mediated by changes in the intracellular concentration of cyclic-AMP.  相似文献   

18.
In Gram-negative bacteria, most of the sec-dependent exoproteins are secreted via the type II secretion system (T2SS or secreton). In Pseudomonas aeruginosa, T2SS consists of 12 Xcp proteins (XcpA and XcpP to XcpZ) organized as a multiproteic complex within the envelope. In this study, by a co-purification approach using a His-tagged XcpZ as a bait, XcpY and XcpZ were found associated together to constitute the most stable functional unit so far isolated from the P. aeruginosa secreton. This subcomplex was also found to interact with XcpR and XcpS to form a XcpRSYZ complex which was isolated under native conditions. Another component, XcpP was not found to be associated to the complex but the results suggest that it can transiently interact with the XcpYZ subcomplex in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号