首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Yersinia pestis low-Ca2+ response stimulon is responsible for the environmentally regulated expression and secretion of antihost proteins (V antigen and Yops). We have previously shown that yscO encodes a secreted core component of the Yop secretion (Ysc) mechanism. In this study, we constructed and characterized in-frame deletions in the adjacent gene, yscP, in the yscN-yscU operon. The DeltaP1 mutation, which removed amino acids 246 to 333 of YscP, had no effect on Yop expression or secretion, and the mutant protein, YscP1, was secreted, as was YscP in the parent. In contrast, the DeltaP2 strain expressed and secreted less of each Yop than did the parent under the inductive conditions of 37 degrees C and the absence of Ca2+, with an exception being YopE, which was only minimally affected by the mutation. The YscP2 protein, missing amino acids 57 to 324 of YscP, was expressed but not secreted by the DeltaP2 mutant. The effect of the DeltaP2 mutation was at the level of Yop secretion because YopM and V antigen still showed limited secretion when overproduced in trans. Excess YscP also affected secretion: overexpression of YscP in the parent, in either yscP mutant, or in an lcrG mutant effectively shut off secretion. However, co-overexpression of YscO and YscP had no effect on secretion, and YscP overexpression in an lcrE mutant had little effect on Yop secretion, suggesting that YscP acts, in conjunction with YscO, at the level of secretion control of LcrE at the bacterial surface. These findings place YscP among the growing family of mobile Ysc components that both affect secretion and themselves are secreted by the Ysc.  相似文献   

2.
Pathogenic yersiniae secrete antihost Yop proteins by a recently discovered secretion pathway which is also encountered in several animal and plant pathogens. The components of the export machinery are encoded by the virA (lcrA), virB (lcrB), and virC (lcrC) loci of the 70-kb pYV plasmid. In the present paper we describe yscU, the last gene of the virB locus. We determined the DNA sequence and mutated the gene on the pYV plasmid. After inactivation of yscU, the mutant strain was unable to secrete Yop proteins. The topology of YscU was investigated by the analysis of YscU-PhoA translational fusions generated by TnphoA transposition. This showed that the 40.3-kDa yscU product contains four transmembrane segments anchoring a large cytoplasmic carboxyl-terminal domain to the inner membrane. YscU is related to Spa40 from Shigella flexneri, to SpaS from Salmonella typhimurium, to FlhB from Bacillus subtilis, and to HrpN from Pseudomonas solanacearum.  相似文献   

3.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

4.
Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain.  相似文献   

5.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

6.
Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop-secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock-out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242-293 of YopN. In contrast with a yopN null mutant, a yopNDelta248-272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation-control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.  相似文献   

7.
We have previously visualized three Ca2+ transients, generated by release from intracellular stores, which are associated with cytokinesis during the early cell division cycles of zebrafish embryos: the furrow positioning, propagation and deepening transients. Here we demonstrate the requirement of the latter for furrow deepening, and identify the Ca2+ release channels responsible for generating the deepening transient. The introduction of the Ca2+ buffer 5,5'-dibromo-BAPTA, at an appropriate time to challenge only the deepening transient, resulted in the dissipation of this transient and an inhibition of furrow deepening. Introduction of antagonists of the inositol 1,4,5-trisphosphate (IP3) receptor (heparin and 2-aminoethoxydiphenylborate; 2-APB) at the appropriate time, blocked the furrow deepening transient and resulted in an inhibition of furrow deepening. In contrast, antagonists of the ryanodine receptor and the NAADP-sensitive channel had no effect on either the furrow deepening transient or on furrow deepening. In addition, microinjection of IP3 led to the release of calcium from IP3-sensitive stores, whereas the introduction of caffeine or cADPR failed to induce any increase in intracellular Ca2+. Our new data thus support the idea that Ca2+ released via IP3 receptors is essential for generating the furrow deepening transient and demonstrate a requirement for a localized cytosolic Ca2+ riseforthe furrow deepening process. We also present data to show that the endoplasmic reticulum and IP3 receptors are localized on either side of the cleavage furrow, thus providing the intracellular Ca2+ store and release mechanism for generating the deepening transient.  相似文献   

8.
A cls5-1 mutant of Saccharomyces cerevisiae is specifically sensitive to high concentrations of Ca2+, with elevated intracellular calcium content and altered cell morphology in the presence of 100 mM Ca2+. To reveal the mechanisms of the Ca2+-sensitive phenotype, we investigated the gene responsible and its interacting network. We demonstrated that CLS5 is identical to PFY1, encoding profilin. Involvement of profilin in the maintenance of intracellular Ca2+ homeostasis was supported by the fact that both exchangeable and non-exchangeable intracellular Ca2+ pools in the cls5-1 mutant are higher than those of the wild-type strain. Several mutations of the genes whose proteins physically interact with profilin resulted in the Ca2+-sensitive phenotype. Examination of the intracellular Ca2+ pools indicated that Bni1p, Bem1p, Rho1p, and Cla4p are also required for the maintenance of Ca2+ homeostasis. Quantitative morphological analysis revealed that the Ca2+-induced morphological changes in cls5-1 cells are similar to bem1 and cls4-1 cells. Common Ca2+-induced morphological changes were an increase in cell size and a decrease of the ratio of budded cells in the population. Since a mutation allele of cls4-1 is located in the CDC24 gene, we suggest that profilin, Bem1p, and Cdc24p are required for Ca2+-modulated bud formation. Thus, profilin is involved in Ca2+ regulation in two ways: the first is Ca2+ homeostasis by coordination with Bni1p, Bem1p, Rho1p, and Cla4p, and the second is the requirement of Ca2+ for bud formation by coordination with Bem1p and Cdc24p.  相似文献   

9.
Yersinia pestis is a gram-negative human pathogen that uses a type III secretion system to deliver virulence factors into human hosts. The delivery is contact-dependent and it has been proposed that polymerization of Yop secretion protein F (YscF) is used to puncture mammalian cell membranes to facilitate delivery of Yersinia outer protein effectors into host cells. To evaluate the potential immunogenicity and protective efficacy of YscF against Y. pestis, we used a purified recombinant YscF protein as a potential vaccine candidate in a mouse subcutaneous infection model. YscF was expressed and purified from Escherichia coli by immobilized metal-ion affinity chromatography and protein identity was confirmed by ion trap mass spectrometry. The recombinant protein was highly alpha-helical and formed relatively stable aggregates under physiological conditions. The properties were consistent with behavior expected for the native YscF, suggesting that the antigen was properly folded. Ten mice were inoculated subcutaneously, administered booster injections after one month, and challenged with 130 LD(50) of wild type Y. pestis CO92. Six animals in the vaccinated group but none in the control group survived the challenge. The vaccinated animals produced high levels of specific antibodies against YscF as determined by Western blot. The data were statistically significant (P = 0.053 by two-tailed Fisher's test), suggesting that the YscF protein can provide a protective immune response against lethal plague challenge during subcutaneous plague infection.  相似文献   

10.
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown. We identified two domains in CAPS with distinct membrane-binding properties that were each essential for CAPS activity in regulated exocytosis. The first of these, a centrally located pleckstrin homology domain, exhibited three properties: charge-based binding to acidic phospholipids, binding to plasma membrane but not DCV membrane, and stereoselective binding to phosphatidylinositol 4,5-bisphosphate. Mutagenesis studies revealed that the former two properties but not the latter were essential for CAPS function. The central pleckstrin homology domain may mediate transient CAPS interactions with the plasma membrane during Ca2+-triggered exocytosis. The second membrane association domain comprising distal C-terminal sequences mediated CAPS targeting to and association with neuroendocrine DCVs. The CAPS C-terminal domain was also essential for optimal activity in regulated exocytosis. The presence of two membrane association domains with distinct binding specificities may enable CAPS to bind both target membranes to facilitate DCV-plasma membrane fusion.  相似文献   

11.
Yao J  Gaffaney JD  Kwon SE  Chapman ER 《Cell》2011,147(3):666-677
Synaptic transmission involves a fast synchronous phase and a slower asynchronous phase of neurotransmitter release that are regulated by distinct Ca(2+) sensors. Though the Ca(2+) sensor for rapid exocytosis, synaptotagmin I, has been studied in depth, the sensor for asynchronous release remains unknown. In a screen for neuronal Ca(2+) sensors that respond to changes in [Ca(2+)] with markedly slower kinetics than synaptotagmin I, we observed that Doc2--another Ca(2+), SNARE, and lipid-binding protein--operates on timescales consistent with asynchronous release. Moreover, up- and downregulation of Doc2 expression levels in hippocampal neurons increased or decreased, respectively, the slow phase of synaptic transmission. Synchronous release, when triggered by single action potentials, was unaffected by manipulation of Doc2 but was enhanced during repetitive stimulation in Doc2 knockdown neurons, potentially due to greater vesicle availability. In summary, we propose that Doc2 is a Ca(2+) sensor that is kinetically tuned to regulate asynchronous neurotransmitter release.  相似文献   

12.
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.  相似文献   

13.
14.
Phospholipase C-gamma is required for agonist-induced Ca2+ entry   总被引:2,自引:0,他引:2  
We report here that PLC-gamma isoforms are required for agonist-induced Ca2+ entry (ACE). Overexpressed wild-type PLC-gamma1 or a lipase-inactive mutant PLC-gamma1 each augmented ACE in PC12 cells, while a deletion mutant lacking the region containing the SH3 domain of PLC-gamma1 was ineffective. RNA interference to deplete either PLC-gamma1 or PLC-gamma2 in PC12 and A7r5 cells inhibited ACE. In DT40 B lymphocytes expressing only PLC-gamma2, overexpressed muscarinic M5 receptors (M5R) activated ACE. Using DT40 PLC-gamma2 knockout cells, M5R stimulation of ER Ca2+ store release was unaffected, but ACE was abolished. Normal ACE was restored by transient expression of PLC-gamma2 or a lipase-inactive PLC-gamma2 mutant. The results indicate a lipase-independent role of PLC-gamma in the physiological agonist-induced activation of Ca2+ entry.  相似文献   

15.
Mycoplasma hyopneumoniae mhp379 is a putative lipoprotein that shares significant amino acid sequence similarity with a family of bacterial thermostable nucleases. To examine the nuclease activity of mhp379, the gene was cloned and expressed in Escherichia coli following the deletion of the amino-terminal signal sequence and prokaryotic lipoprotein cleavage site and mutagenesis of the mycoplasma TGA tryptophan codons to TGG. The recombinant fusion protein yielded a 33-kDa thrombin cleavage product, corresponding in size to the mature mhp379 protein. Exonuclease activity was indicated by agarose gel electrophoresis analysis of the reaction products that were released when different nucleic acid substrates were used. Endonuclease activity was also indicated by the digestion of closed circular plasmid DNA. The recombinant mhp379 fusion protein completely digested single-stranded DNA, double-stranded DNA (dsDNA), and RNA. The optimal reaction conditions were determined with a novel nuclease assay based on the enhancement of fluorescence of SYBR green I bound to dsDNA. Optimal activity was observed in the presence of calcium ions at a concentration of 15 mM and a pH of 9.5. No nuclease activity was observed in the absence of calcium ions. Mycoplasmas do not have the ability to synthesize nucleic acid precursors, and thus, nucleases are likely to be important in the acquisition of precursors for the synthesis of nucleic acids. Homologs of an ATP-binding cassette (ABC) transport system were identified immediately downstream of the gene encoding mhp379, and two homologs of M. pneumoniae lipoprotein multigene family 2 were also identified immediately upstream. Homologs of mhp379 were identified in the sequenced genomes of a number of mycoplasma species, and in most cases the homologous ABC transport system was identified immediately downstream of the homologous gene; in several cases a homolog of M. pneumoniae lipoprotein multigene family 2 was also identified immediately upstream. These observations suggest that mhp379 comprises part of a conserved ABC transport operon in mycoplasmas and that the exonuclease activity of mhp379 may be associated with the conserved function of the ABC transport system in the import of nucleic acid precursors. This is the first study to identify the gene and characterize the activity of a mycoplasma exonuclease.  相似文献   

16.
Shigella flexneri causes bacillary dysentery by invading epithelial cells of the colonic mucosa. The invasion process requires the synthesis and secretion of the virulence plasmid-encoded Ipa proteins. Using TnphoA mutagenesis, we have identified two virulence plasmid genes, mxiJ and mxiM, that encode proteins exported by the general export pathway. Analysis of the MxiJ and MxiM deduced amino acid sequences suggested that mxiJ and mxiM might encode lipoproteins, which was confirmed by [3H]palmitate labeling of MxiJ:PhoA and MxiM:PhoA fusion proteins. A mxiJ mutant was unable to invade HeLa cells, to induce the formation of plaques on confluent monolayers of HeLa cells, and to provoke keratoconjunctivitis in guinea pigs. In addition, secretion of seven polypeptides, including IpaA, IpaB, and IpaC, was abolished in the mxiJ mutant. Sequence comparisons indicated that MxiJ and MxiH, which is encoded by a gene located upstream from mxiJ, are homologous to the Yersinia enterocolitica YscJ and YscF proteins, respectively.  相似文献   

17.
Yersinia pestis expresses a set of plasmid-encoded virulence proteins called Yops and LcrV that are secreted and translocated into eukaryotic cells by a type III secretion system. LcrV is a multifunctional protein with antihost and positive regulatory effects on Yops secretion that forms a stable complex with a negative regulatory protein, LcrG. LcrG has been proposed to block the secretion apparatus (Ysc) from the cytoplasmic face of the inner membrane under nonpermissive conditions for Yops secretion, when levels of LcrV in the cell are low. A model has been proposed to describe secretion control based on the relative levels of LcrG and LcrV in the bacterial cytoplasm. This model proposes that under secretion-permissive conditions, levels of LcrV are increased relative to levels of LcrG, so that the excess LcrV titrates LcrG away from the Ysc, allowing secretion of Yops to occur. To further test this model, a mutant LcrG protein that could no longer interact with LcrV was created. Expression of this LcrG variant blocked secretion of Yops and LcrV under secretion permissive conditions in vitro and in a tissue culture model. These results agree with the previously described secretion-blocking activity of LcrG and demonstrate that the interaction of LcrV with LcrG is necessary for controlling Yops secretion.  相似文献   

18.
By establishing a unique screening method, we have isolated yeast mutants that die only after differentiating into cells with a mating projection, and some of them are also defective in Ca2+ signaling. The mutants were classified into five complementation groups, one of which we studied extensively. This mutation defines a new gene, designated MID1, which encodes an N-glycosylated, integral plasma membrane protein with 548 amino acid residues. The mid1-1 mutant has low Ca2+ uptake activity, loses viability after receiving mating pheromones, and escapes death when incubated with high concentrations of CaCl2. The MID1 gene is nonessential for vegetative growth. The efficiency of mating between MATa mid1-1 and MAT alpha mid1-1 cells is low. These results demonstrate that MID1 is required for Ca2+ influx and mating.  相似文献   

19.
Stimulation of cardiac L-typeCa2+ channels by cAMP-dependentprotein kinase (PKA) requires anchoring of PKA to a specificsubcellular environment by A-kinase anchoring proteins (AKAP). Thisstudy evaluated the possible requirement of AKAP in PKA-dependentregulation of L-type Ca2+ channelsin vascular smooth muscle cells using the conventional whole cellpatch-clamp technique. Peak Ba2+current in freshly isolated rabbit portal vein myocytes wassignificantly increased by superfusion with either 0.5 µM isoproterenol (131 ± 3% of the control value,n = 11) or 10 µM 8-bromoadenosine3',5'-cyclic monophosphate (8-BrcAMP; 114 ± 1%,n = 8). The PKA-induced stimulatory effects ofboth isoproterenol and 8-BrcAMP were completely abolished by a specificPKA inhibitor KT-5720 (0.2 µM) or by dialyzing cells with Ht 31 (100 µM), a peptide that inhibits the binding of PKA to AKAP. In contrast,Ht 31 did not block the excitatory effect of the catalytic subunit ofPKA when dialyzed into the cells. These data suggest that stimulationof Ca2+ channels in vascularmyocytes by endogenous PKA requires localization of PKA through bindingto AKAP.

  相似文献   

20.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号