首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
History of discovery of the first hyperthermophiles   总被引:2,自引:0,他引:2  
Hyperthermophiles, growing optimally at 80°C and above had been discovered in 1981. They represent the upper temperature border of life and are found within high temperature environments. In their basically anaerobic surroundings, they gain energy mainly by inorganic redox reactions. Within the phylogenetic tree, hyperthermophiles occupy all the short deep branches closest to the root. The earliest archaeal phylogenetic lineage is represented by the extremely tiny members of the novel kingdom of Nanoarchaeota.  相似文献   

2.
Extremophiles and their adaptation to hot environments.   总被引:26,自引:0,他引:26  
K O Stetter 《FEBS letters》1999,452(1-2):22-25
Water-containing terrestrial, subterranean and submarine high temperature areas harbor a variety of hyperthermophilic bacteria and archaea which are able to grow optimally above 80 degrees C. Hyperthermophiles are adapted to hot environments by their physiological and nutritional requirements. As a consequence, cell components like proteins, nucleic acids and membranes have to be stable and even function best at temperatures around 100 degrees C. The chemolithoautotrophic archaeon Pyrolobus fumarii is able to grow at 113 degrees C and, therefore, represents the upper temperature border of life. For the first time, (vegetative) cultures of Pyrolobus and Pyrodictium are able to survive autoclaving.  相似文献   

3.
Shi B  Xia X 《Current microbiology》2003,46(2):120-123
Adaptation to novel environments usually entails morphological changes. The cell morphology of six experimental populations of Pseudomonas pseudoalcaligenes and their common ancestor were examined with scanning electron microscopy (SEM). The six experimental populations were propagated under different temperatures for 10 months: three of them cultured at constant normal temperature (35 degrees C) forming the control group, and the other three cultured at incremental higher temperatures (from 41 degrees to 47 degrees C) as the HT group. SEM showed the deformed and elongated cells in the 6-h cultures of both ancestral and control populations at 45 degrees C, indicating that 45 degrees C is stressful for the ancestral and the control populations. In contrast, the HT populations retained normal cell shape in the 6-h cultures at both 35 degrees C and 45 degrees C. The mean cell volumes of control and HT populations increased 29% and 34%, respectively, relative to the ancestor at their respective thermal regimens, suggestion that the culturing conditions might favor larger cells.  相似文献   

4.
The lines of Caenorhabditis elegans displaying low (LT) and high (HT1, HT2, and HT3) thermotolerance were obtained from the wild line N2 by artificial selection for thermostability of locomotion and by natural selection in laboratory for thermotolerance of fertility under tolerable environmental temperature elevation. All these lines are new genetic variants that emerged during the experiment. The worms of lines HT2 and HT3 displayed an elevated upper temperature limit for reproduction (from 26 to 27.5 degrees C), thermostability of locomotion at 36 degrees C, and survival at 37 degrees C as compared with the line N2. The results have demonstrated that adaptation of C. elegans to high temperatures is an appropriate laboratory model for studying the mechanisms involved in the evolution of thermotolerance of poikilothermic Metazoa.  相似文献   

5.
Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.  相似文献   

6.
After transforming host cells of Bacillus stearothermophilus CU21 with a recombinant plasmid pLP11 that harbored constitutive penicillinase genes of B. licheniformis CO1, both the stability of the plasmid and specific rate of penicillinase production were studied. The temperature at which the plasmid could be kept in a stable fashion in the transformant of B. stearothermophilus CU21 (pLP11) ranged nearly from 44 to 50 degrees C, irrespective of batch and continuous cultures. Continuous and steady-state cultures of the transformant could only be realized within this narrower temperature range. Indeed, the approximate temperature ranges of growth for the host and transformant were from 40 to 70 degrees C and from 40 to 63 degrees C, respectively. Clearly, the upper limit for the growth temperature of host cells decreased when they were transformed. Kinetic patterns of penicillinase production in continuous culture of the transformant (with plasmid) from 44 to 50 degrees C differed remarkably from that of B. licheniformis CO1 (without plasmid) at 37 degrees C.  相似文献   

7.
Laboratory studies of temperature effects on short-term feeding and growth rates were combined with field data on thermal environments to explore the consequences of temperature variation for growth of caterpillars of the cabbage white butterfly, Pieris rapae. Mean short-term (24-h) consumption and growth rates of fourth-instar P. rapae feeding on collard leaves increased continuously with increasing temperatures between 10 degrees and 35 degrees C, peaked at 35 degrees C, and declined rapidly with temperatures above 35 degrees C. Physical models can mimic temperatures of real fifth-instar caterpillars under collard leaves within 1 degrees -2 degrees C in sunny summer conditions in Seattle, Washington. Continuous recordings of operative temperatures of model caterpillars in a collard garden suggest that, at the timescale of the duration of the fifth instar (5-8 d in the field), P. rapae caterpillars frequently experience temperatures spanning a 25 degrees C range, they spend most of their time at temperatures well below those that maximize growth, and they encounter substantial variation in the frequency distribution of operative temperatures between time periods. Combining these data on growth rate as a function of temperature and the distribution of operative temperatures in the field, I illustrate how growth rates at higher temperatures can make disproportionate contributions to the overall mean growth rates even when higher temperatures are relatively infrequent. Fluctuating thermal conditions may generate variable patterns of selection on reaction norms for growth rate in the field.  相似文献   

8.
Cold adaptation of microorganisms   总被引:11,自引:0,他引:11  
Psychrophilic and psychrotrophic microorganisms are important in global ecology as a large proportion of our planet is cold (below 5 degrees C); they are responsible for the spoilage of chilled food and they also have potential uses in low-temperature biotechnological processes. Psychrophiles and psychrotrophs are both capable of growing at or close to zero, but the optimum and upper temperature limits for growth are lower for psychrophiles compared with psychrotrophs. Psychrophiles are more often isolated from permanently cold habitats, whereas psychrotrophs tend to dominate those environments that undergo thermal fluctuations. The molecular basis of psychrophily is reviewed in terms of biochemical mechanisms. The lower growth temperature limit is fixed by the freezing properties of dilute aqueous solutions inside and outside the cell. In contrast, the ability of psychrophiles and psychrotrophs to grow at low, but not moderate, temperatures depends on adaptive changes in cellular proteins and lipids. Changes in proteins are genotypic, and are related to the properties of enzymes and translation systems, whereas changes in lipids are genotypic or phenotypic and are important in regulating membrane fluidity and permeability. The ability to adapt their solute uptake systems through membrane lipid modulation may distinguish psychrophiles from psychrotrophs. The upper growth temperature limit can result from the inactivation of a single enzyme type or system, including protein synthesis or energy generation.  相似文献   

9.
Knowledge of our Planet's biosphere has increased tremendously during the last 10 to 20 years. In the field of Microbiology in particular, scientists have discovered novel "extremophiles", microorganisms capable of living in extreme environments such as highly acidic or alkaline conditions, at high salt concentration, with no oxygen, extreme temperatures (as low as -20 degrees C and as high as 300 degrees C), at high concentrations of heavy metals and in high pressure environments such as the deep-sea. It is apparent that microorganisms can exist in any extreme environment of the Earth, yet already scientists have started to look for life on other planets; the so-called "Exobiology" project. But as yet we have little knowledge of the deep-sea and subsurface biosphere of our own planet. We believe that we should elucidate the Biodiversity of Earth more thoroughly before exploring life on other planets, and these attempts would provide deeper insight into clarifying the existence of extraterrestrial life. We focused on two deep-sea extremophiles in this article; one is "Piezophiles", and another is "Hyperthermophiles". Piezophiles are typical microorganisms adapted to high-pressure and cold temperature environments, and located in deep-sea bottom. Otherwise, hyperthermophiles are living in high temperature environment, and located at around the hydrothermal vent systems in deep-sea. They are not typical deep-sea microorganisms, but they can grow well at high-pressure condition, just like piezophiles. Deming and Baross mentioned that most of the hyperthermophilic archaea isolated from deep-sea hydrothermal vents are able to grow under conditions of high temperature and pressure, and in most cases their optimal pressure for growth was greater than the environmental pressure they were isolated from. It is possible that originally their native environment may have been deeper than the sea floor and that there had to be a deeper biosphere. This implication suggests that the deep-sea hydrothermal vents are the windows to a deep subsurface biosphere. A vast array of chemoautotrophic deep-sea animal communities have been found to exist in cold seep environments, and most of these animals are common with those found in hydrothermal vent environments. Thus, it is possible to consider that the cold seeps are also one of slit windows to a deep subsurface biosphere. We conclude that the deep-sea extremophiles are very closely related into the unseen majority in subsurface biosphere, and the subsurface biosphere probably concerns to consider the "exobiology".  相似文献   

10.
The environmental predictability (EP) hypothesis proposes that rapid cold hardening (RCH) might be common in temperate species incapable of surviving freezing events and which also dwell in unpredictable environments. The kelp fly Paractora dreuxi serves as a useful model organism to test this prediction at an intra-specific level because larvae and adults show different responses to low temperature despite occupying a similar unpredictable thermal environment. Here, using acclimation temperatures, which simulated seasonal temperature variation, we find little evidence for RCH in the freeze-intolerant adults but a limited RCH response in freeze-tolerant larvae. In the relatively short-lived adults, survival of -11 degrees C generally did not improve after 2h pre-treatments at -4, -2, 0, 10, 20 or 25 degrees C either in summer- (10 degrees C) or winter (0 degrees C)-acclimated individuals. By contrast, survival of summer-acclimated larvae to -7.6 degrees C was significantly improved by approximately 37% and 30% with -2 and 0 degrees C pre-treatments, respectively. The finding that summer-acclimated larvae showed RCH whereas this was not the case in the winter-acclimated larvae partially supports the predictions of the EP hypothesis. However, the EP hypothesis also predicts that the adults should have demonstrated an RCH response, yet they did not do so. Rather, it seems likely that they avoid stressful environments by behavioural thermoregulation. Differences in responses among the adults and larvae are therefore to some extent predictable from differences in their feeding requirements and behaviour. These results show that further studies of RCH should take into account the way in which differences among life stages influence the interaction between phenotypic plasticity and environmental variability and predictability.  相似文献   

11.
The activity and stability of several enzymes from the facultative thermophile Bacillus flavothermus, grown within the mesophilic and thermophilic region at 34 degrees C, 43 degrees C, 52 degrees C and 70 degrees C, have been examined. While the temperature optima and maxima of all enzymes tested were found to remain unchanged at all growth temperatures, it was demonstrated that the heat stability of the proteins increased with ten perature, however, not uniformly for all enzymes. One exception was acetate kinase and the intrinsic stability of pyruvate kinase was found to increase only slightly. With all other proteins tested (alanine dehydrogenase, isocitric dehydrogenase and glucose-6-phosphate dehydrogenase, glutamate-oxalacetate and glutamate-pyruvate transaminase and myokinase) the intrinsic stability was found to increase to about 55 degrees C, but stayed unaltered at higher growth temperatures. Except for acetate kinase and myokinase, the enzymes could be stabilized by their respective substrates and the heat stability of the ES-complexes was found also to depend on the growth temperature of the cells. These data lead to the conclusion that the enzymes undergo a transition from heat-labile to thermostable within the growth temperature range between 44 degrees C and 51 degrees C while the thermal characteristics are not changed below and beyond this crucial region.  相似文献   

12.
The photosynthetic rate may be strongly limited by internal conductance from the intercellular airspace to the chloroplast stroma (g(i)). However, the effects of growth and leaf temperature on g(i) are still unclarified. In this work, we determined the temperature dependence of g(i) in spinach leaves grown at 30/25 degrees C (high temperature; HT) and 15/10 degrees C (low temperature; LT), using the concurrent measurements of the gas exchange rate and stable carbon isotope ratio. Moreover, we quantified the effects of g(i) on the temperature dependence of the photosynthetic rate. We measured g(i) and the photosynthetic rate at a CO(2) concentration of 360 microl l(-1) under saturating light (A(360)) at different leaf temperatures. The optimum temperature for A(360) was 28.5 degrees C in HT leaves and 22.9 degrees C in LT leaves. The optimum temperatures for g(i) were almost similar to those of A(360) in both HT and LT leaves. There was a strong linear relationship between A(360) and g(i). The photosynthetic rates predicted from the C(3) photosynthesis model taking account of g(i) agreed well with A(360) in both HT and LT leaves. The temperature coefficients (Q(10)) of g(i) between 10 and 20 degrees C were 2.0 and 1.8 in HT and LT leaves, respectively. This suggests that g(i) was determined not only by physical diffusion but by processes facilitated by protein(s). The limitation of the photosynthetic rate imposed by g(i) increased with leaf temperature and was greater than the limitation of the stomatal conductance at any temperature, in both HT and LT leaves. This study suggests that g(i) substantially limits the photosynthetic rate, especially at higher temperatures.  相似文献   

13.
Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures   总被引:1,自引:0,他引:1  
Soybean aphid, Aphis glycines Matsumura, is now widely established in soybean, Glycine max L., production areas of the northern United States and southern Canada and is becoming an important economic pest. Temperature effect on soybean aphid fecundity and survivorship is not well understood. We determined the optimal temperature for soybean aphid growth and reproduction on soybean under controlled conditions. We constructed life tables for soybean aphid at 20, 25, 30, and 35 degrees C with a photoperiod of 16:8 (L:D) h. Population growth rates were greatest at 25 degrees C. As temperature increased, net fecundity, gross fecundity, generation time, and life expectancy decreased. The prereproductive period did not differ between 20 and 30 degrees C; however, at 30 degrees C aphids required more degree-days (base 8.6 degrees C) to develop. Nymphs exposed to 35 degrees C did not complete development, and all individuals died within 11 d. Reproductive periods were significantly different at all temperatures, with aphids reproducing longer and producing more progeny at 20 and 25 degrees C than at 30 or 35 degrees C. Using a modification of the nonlinear Logan model, we estimated upper and optimal developmental thresholds to be 34.9 and 27.8 degrees C, respectively. At 25 degrees C, aphid populations doubled in 1.5 d; at 20 and 30 degrees C, populations doubled in 1.9 d.  相似文献   

14.
Environmental regulation of sex determination in reptiles   总被引:6,自引:0,他引:6  
The various patterns of environmental sex determination in squamates, chelonians and crocodilians are described. High temperatures produce males in lizards and crocodiles but females in chelonians. Original experiments on the effects of incubation at 30 degrees C (100% females) or 33 degrees C (100% males) on development in Alligator mississippiensis are described. These include an investigation of the effect of exposing embryos briefly to a different incubation temperature on the sex ratio at hatching, and a study of the effects of 30 degrees C and 33 degrees C on growth and development of alligator embryos and gonads. A 7-day pulse of one temperature on the background of another was insufficient to alter the sex ratio dramatically. Incubation at 33 degrees C increased the rate of growth and development of alligator embryos. In particular, differentiation of the gonad at 33 degrees C was enhanced compared with 30 degrees C. A hypothesis is developed to explain the mechanism of temperature-dependent sex determination (TSD) in crocodilians. The processes of primary sex differentiation are considered to involve exposure to a dose of some male-determining factor during a specific quantum of developmental time during early incubation. The gene that encodes for the male-determining factor is considered to have an optimum temperature (33 degrees C). Any change in the temperature affects the expression of this gene and affects the dose or quantum embryos are exposed to. In these cases there is production of females by default. The phylogenetic implications of TSD for crocodilians, and reptiles in particular, are related to the life history of the animal from conception to sexual maturity. Those animals that develop under optimal conditions grow fastest and largest and become male. A general association between the size of an animal and its sex is proposed for several types of vertebrate.  相似文献   

15.
松毛虫狭颊寄蝇(Carcelia matsukarehae)是松毛虫重要的寄生天敌之一。在控制松毛虫自然种群增长中起重要的作用。本文在15℃、18℃、22℃、25℃、29℃、32℃6个恒温。相对湿度为70%~85%,光照为12:12(L:D)的条件下研究了松毛虫狭颊寄蝇的生态学特性。结果表明,松毛虫狭颊寄蝇的世代发育起点温度是5.23℃。积温为523.73日·度。成虫寿命在没有补充营养的条件下为1.3~8.06d,喂以30%蜜糖水。寿命可以从9.63d延长到36.42d。成虫产卵的最适温度为236℃,每雌最大产量为86粒.种群增长最适温度22~25℃.以近似方法计算22℃和25℃下实验种群繁殖特征生命表参数。在22℃,R0、T0、rc和A值分别为24.89、37.33、0.086和1.089。在25℃时分别为20.01、32.38、0.09和1.10.22℃时种群最大LxMx出现在成虫羽化后第33~38天。25℃时的LxMx最大值出现在成虫羽化后第29~34天。  相似文献   

16.
天山东部西伯利亚落叶松树轮生长对气候要素的响应分析   总被引:6,自引:1,他引:6  
天山东部西伯利亚落叶松的树木年轮学研究可以看出:森林上限树轮宽度年表之间相关性较高而下限年表间相关稍低,表明下限小生境要素对树木生长干扰较大。森林上下限树轮年表中样本的总解释量(ESP)和信噪比(SNR)都比较高,说明树木中都含有较多的环境信息;但标准年表中平均敏感度(M.S.)和轮宽指数的标准差(S.D.)都是森林上限数值低于下限,这表明森林上限树木生长对环境变化响应的敏感性降低;相关分析和响应分析也发现森林下限生长的树木对气候因子的响应较为显著。就温度而言,森林上限和下限表现基本一致,树木生长多与温度负相关,其中下限树木生长与春季均温和3.6月份均温显著负相关;降水表现出一定的差别,上限树木生长与春季、夏季及年降水量有较高的负相关,而对下限树木生长影响最大的则是冬季和3—6月份降水。湿润指数与降水基本一致即上限呈负相关而下限正相关,温暖指数全为负相关,寒冷指数下限负相关显著;显然该地区森林上下限树木生长的生态模式存在着一定的差异。研究发现,冬春季节的不同水热组合则是形成树木年轮宽窄的限制因素;同时,前期生长的滞后效应对年轮形成有重要的影响。  相似文献   

17.
The extent to which phenotypic plasticity might mediate short-term responses to environmental change is controversial. Nonetheless, theoretical work has made the prediction that plasticity should be common, especially in predictably variable environments by comparison with those that are either stable or unpredictable. Here we examine these predictions by comparing the phenotypic plasticity of thermal tolerances (supercooling point (SCP), lower lethal temperature (LLT), upper lethal temperature (ULT)), following acclimation at either 0, 5, 10 or 15 degrees C, for seven days, of five, closely-related ameronothroid mite species. These species occupy marine and terrestrial habitats, which differ in their predictability, on sub-Antarctic Marion Island. All of the species showed some evidence of pre-freeze mortality (SCPs -9 to -23 degrees C; LLTs -3 to -15 degrees C), though methodological effects might have contributed to the difference between the SCPs and LLTs, and the species are therefore considered moderately chill tolerant. ULTs varied between 36 degrees C and 41 degrees C. Acclimation effects on SCP and LLT were typically stronger in the marine than in the terrestrial species, in keeping with the prediction of strong acclimation responses in species from predictably variable environments, but weaker responses in species from unpredictable environments. The converse was found for ULT. These findings demonstrate that acclimation responses vary among traits in the same species. Moreover, they suggest that there is merit in assessing the predictability of changes in high and low environmental temperatures separately.  相似文献   

18.
Two extreme dikaryotic idolates chosen from a large sample of a localised population of Schizophyllum commune exhibited a considerable amount of genetical variation for growth rate at the near ambient temperature of 20 degrees C and at the higher temperature of 30 degrees C. The potential variation within these extreme isolates were greater than the variation observed in the whole sample. Regression analysis of the variation in growth rate of the dikaryotic progeny of the extreme isolates on that of their component monokaryons showed that the nature of gene action was not the same in these two stages of the life cycle. The simple additive-dominance model of gene action was adequate to explain the variation in growth rate in both of the extreme isolates at both of the temperatures. The small deviations from this model could be accounted for by unequal gene frequencies due to small sample size although a low incidence of non-allelic interactions could not be rule out. Directional dominance for growth rate was detected in both isolates at the more normal temperature and it was opposing in direction in the two isolates. In the slow growing isolate the dominance was for faster growth and in the fast growing isolate it was for slower growth. This is expected for a character which displays overall ambi-directional dominance if isolates with more extreme growth rates than those recovered in the population sample are eliminated by stabilising selection. The dominance is temperature dependent being ambi-directional in both isolates at the higher temperature. Environmental heterogeneity, the buffering effects of directional dominance and genotype-environment interactions and opposing selective forces operating on the monokaryotic and dikaryotic stages of the life cycle are possible contributory factors to the considerable free and potential variability displayed in this small, localised population.  相似文献   

19.
Pollen viability and germination are known to be sensitive to high temperature (HT). However, the mode by which high temperature impairs pollen functioning is not yet clear. In the present study, we investigated the effect of high temperature on changes occurring in carbohydrate of bell pepper (Capsicum annuum L. cv. Mazurka) pollen in order to find possible relations between these changes and pollen germination under heat stress. When pepper plants were maintained under a moderate HT regime (32/26 degrees C, day/night) for 8 days before flowers have reached anthesis, pollen count at anthesis was similar to that found in plants grown under normal temperatures (NT 28/22 degrees C). However, the in vitro germination, carried out at 25 degrees C, of pollen from HT plants was greatly reduced. This effect matched the marked reduction in the number of seeds per fruit in the HT plants. Maintaining the plants at high air CO2 concentration (800 &mgr;mol mol-1 air) in both temperature treatments did not affect the in vitro germination of pollen from NT plants, but restored germination to near the normal level in pollen from HT plants. Under NT conditions, starch, which was negligible in pollen at meiosis (8 days before anthesis, A-8) started to accumulate at A-4 and continued to accumulate until A-2. From that stage until anthesis, starch was rapidly degraded. On the other hand, sucrose concentration rose from stage A-4 until anthesis. Acid invertase (EC 3.2.1.26) activity rose parallel with the increase of sucrose. In pollen from HT plants, sucrose and starch concentrations were significantly higher at A-1 pollen than in that of NT plants. Under high CO2 conditions, the sucrose concentration in the pollen of HT plants was reduced to levels similar to those in NT pollen. In accordance with the higher sucrose concentration in HT pollen, the acid invertase activity in these pollen grains was lower than in NT pollen. The results suggest that the higher concentrations of sucrose and starch in the pollen grains of HT plants may result from reduction in their metabolism under heat stress. Elevated CO2 concentration, presumably by increasing assimilate availability to the pollen grain, may alleviate the inhibition of sucrose and starch metabolism, thereby increasing their utilization for pollen germination under the HT stress. Acid invertase may have a regulatory role in this system.  相似文献   

20.
Painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest) where they seemingly withstand exposure to ice and cold by resisting freezing and becoming supercooled. However, turtles ingest soil and fragments of eggshell as they are hatching from their eggs, and the ingestate usually contains efficient nucleating agents that cause water to freeze at high subzero temperatures. Consequently, neonatal painted turtles have only a modest ability to undergo supercooling in the period immediately after hatching. We studied the limit for supercooling (SCP) in hatchlings that were acclimating to different thermal regimes and then related SCPs of the turtles to the amount of particulate matter in their gastrointestinal (GI) tract. Turtles that were transferred directly from 26 degrees C (the incubation temperature) to 2 degrees C did not purge soil from their gut, and SCPs for these animals remained near -4 degrees C for the 60 days of the study. Animals that were held at 26 degrees C for the duration of the experiment usually cleared soil from their GI tract within 24 days, but SCPs for these turtles were only slightly lower after 60 days than they were at the outset of the experiment. Hatchlings that were acclimating slowly to 2 degrees C cleared soil from their gut within 24 days and realized a modest reduction in their SCP. However, the limit of supercooling in the slowly acclimating animals continued to decline even after all particulate material had been removed from their GI tract, thereby indicating that factors intrinsic to the nucleating agents themselves also may have been involved in the acclimation of hatchlings to low temperature. The lowest SCPs for turtles that were acclimating slowly to 2 degrees C were similar to SCPs recorded in an earlier study of animals taken from natural nests in late autumn, so the current findings affirm the importance of seasonally declining temperatures in preparing animals in the field to withstand conditions that they will encounter during winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号