首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration.  相似文献   

2.
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a “feet-on-the-door” approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.  相似文献   

3.
Using a very low noise voltage clamp technique it has been possible to record from the squid giant axon a slow component of gating current (I g ) during the inactivation phase of the macroscopic sodium current (I Na ) which was hitherto buried in the baseline noise. In order to examine whether this slowI g contains gating charge that originates from transitions between the open (O) and the inactivated (I) states, which would indicate a true voltage dependence of inactivation, or whether other transitions contribute charge to slowI g , a new model independent analysis termed isochronic plot analysis has been developed. From a direct correlation ofI g and the time derivative of the sodium conductance dg Na/d the condition when only O-I transitions occur is detected. Then the ratio of the two signals is constant and a straight line appears in an isochronic plot ofI g vs. dg Na/d . Its slope does not depend on voltage or time and corresponds to the quantal gating charge of the O-I transition (q h ) divided by the single channel ionic conductance (). This condition was found at voltages above – 10 mV up to + 40 mV and a figure of 1.21e was obtained forq h at temperatures of 5 and 15°C. At lower voltages additional charge from other transitions, e.g. closed to open, is displaced during macroscopic inactivation. This means that conventional Eyring rate analysis of the inactivation time constant h is only valid above – 10 mV and here the figure forq h was confirmed also from this analysis. It is further shown that most of the present controversies surrounding the voltage dependence of inactivation can be clarified. The validity of the isochronic plot analysis has been confirmed using simulated gating and ionic currents.Abbreviations I g gating current - I Na sodium ionic current - g Na macroscopic sodium conductance - single channel conductance - C, O, I closed, open, inactivated state occupancy of channels - g h quantal charge displaced in a single O-I transition of Na channel - e equivalent electron charge - h index referring to inactivation process - S l limiting slope in isochronic plot see Eq.(3) - fractional distance, see Fig. 4 and (4, 5) - TMA tetramethylammonium - TTX tetrodotoxin - Tris tris(hydroxymethyl)aminomethane - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid  相似文献   

4.
5.
Amodel peptide that their sequence corresponds to the linker part between domain III and IV of rat brain type IIA Na+ channel has been synthesized for the conformational affect study corresponded to different gated states of Na+ channel. Nuclear magnetic resonance spectra of local anesthetic (LA) diphenyl drugs, such as phenytoin, in presence of a model peptide in both phosphate buffer and phospholipid bicelles (dimyristotl phosphocholine/dihexanoyl phospholcholine), which micelles serve to mimic the peptide-lipid interactions, have been measured to obtain information of the interactions between selected drugs and model peptide. Molecular modeling is performed to help to provide possible conformational information about the polypeptide LIII-IV that may be critical for recognition and signal transduction of inactivated Na+ channel. The voltage-sensing mechanism of Na+ channel involves the movement of the inactivation particles (Ile, Phe, and Met) in the LIII-IV while binding to S4-S5 intracellular region within DIII and DIV. The movement of LIII-IV making its C-terminal residues, including Glu1492 and Glu1493, may aligned near and stabilize the LAs bound with their receptors.  相似文献   

6.
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.  相似文献   

7.
Molecular dynamics simulations and KcsA channel gating   总被引:2,自引:0,他引:2  
The gating mechanism of a bacterial potassium channel, KcsA, has been investigated via multi-nanosecond molecular dynamic simulations of the channel molecules embedded in a fully solvated palmitoyloleoylphosphatidylcholine bilayer. Four events are seen in which a cation (K(+) or, in one case, Na(+)) initially present in the central cavity exits through the intracellular mouth (the presumed gate) of the channel. Whilst in the cavity a cation interacts with the sidechain T107 O gamma atom of one of the subunits prior to its exit from the channel. Secondary structure analysis as a function of time reveals a break in the helicity of one of the M2 helices. This break is expected to lend flexibility to the helices, enabling them to "open" (minimum pore radius >0.13 nm) and "close" (minimum pore radius <0.13 nm) the channel. Fluctuations in the pore radius at the intracellular gate region are of the order of 0.05 nm, with an average radius in the region of the gate of ca. 0.1 nm. However, around the time of exit of a cation, the pore widens to about 0.15 nm. The distances between the C alpha atoms of the inner helices M2 reveal a coupled increase and decrease between the opposite pair of helices at about the time of exit of the ion. This suggests a breathing motion of the M2 helices that may form the basis for a gating mechanism.  相似文献   

8.
Molecular dynamics study of the KcsA potassium channel   总被引:2,自引:3,他引:2       下载免费PDF全文
TW Allen  S Kuyucak    SH Chung 《Biophysical journal》1999,77(5):2502-2516
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately (1)/(3) of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.  相似文献   

9.
Goldman L 《Biophysical journal》1999,76(5):2553-2559
Computations on sodium channel gating were conducted using a closed-open-inactivated coupled kinetic scheme. The time constant of inactivation (tauh) derives a voltage dependency from coupling to voltage-dependent activation even when rate constants between inactivated and other states are strictly voltage independent. The derived voltage dependency does not require any physical, molecular link between the structures responsible for inactivation and the charges producing voltage-dependent activation. The only requirement is that the closed to inactivated rate constant (kCI) differs from the open to inactivated (kOI), consistent with experimental results. A number of mutations and other treatments uncouple sodium channel activation and inactivation in that the voltage dependency of tauh is substantially reduced while voltage-dependent activation persists. However, a clear basis for uncoupling has not been described. A variety of experimental results are accounted for just by changes in the difference between kOI and kCI. In wild type channels, kOI > kCI and inactivation develops with a delay whose time constant is just that for channel opening. Mutations that reduce the kOI - kCI difference reduce the amplitude of the delay process and the derived voltage dependency of tauh. If kOI = kCI, inactivation develops as a single exponential (no matter what the number of closed states), activation and inactivation become independent, parallel processes, and any voltage dependency of tauh is then entirely intrinsic to inactivation. If kOI < kCI, inactivation develops as the sum of exponentials, tauh at negative potentials speeds and then slows with more positive potentials. These predicted kOI < kCI effects have all been seen experimentally (O'Leary, M.E., L.-Q. Chen, R.G. Kallen, and R. Horn. 1995. J. Gen. Physiol. 106: 641-658). An open to closed rate constant of zero also removes the derived voltage dependency of tauh, but activation and inactivation are still coupled and the inactivation delay remains.  相似文献   

10.
Consideration of the modulated receptor hypothesis leads to an interesting interpretation regarding sodium channel block (frog skeletal muscle) by phenobarbital. The inactive channel state appears to present a much higher affinity binding site to phenobarbital. In addition, use of hyperpolarizing prepulses underestimates the blocking potency for this kinetically fast drug.  相似文献   

11.
Voltage-gated ion channels are modular proteins designed by the structural linkage of a voltage sensor and a pore domain. The functional coupling of these two protein modules is a subject of intense research. A major focus has been directed to decipher the role of the S4-S5 linker and the C-end of the inner pore helix in channel gating. However, the contribution of the cytosolic N terminus of S5 remains elusive. To address this issue, we used a chimeric subunit that linked the voltage sensor of the Shaker channel to the prokaryotic KcsA pore domain (denoted as Shaker-KcsA). This chimera preserved the Shaker sequences at both the N terminus of S5 and the C-end of S6. Chimeric Shaker-KcsA subunits did not form functional homomeric channels but were synthesized, folded, and trafficked to the cell surface, as evidenced by their co-assembly with Shaker wild type subunits. Sequential substitution of Shaker amino acids at the C-end of S6 and the N terminus of S5 by the corresponding KcsA created voltage-sensitive channels with voltage-dependent properties that asymptotically approached those of the wild type Shaker channel. Noteworthy, substitution of the region encompassing Phe(401)-Phe(404) at the N-end of Shaker S5 by KcsA residues resulted in a significant gain in voltage sensitivity of the chimeras. Furthermore, analysis of channel function at high [K(+)](o) revealed that the Phe(401)-Phe(404) region is an important molecular determinant for competent coupling of voltage sensing and pore opening. Taken together, these findings indicate that complete replacement of Shaker S5 and S6 by KcsA M1 and M2 is required for voltage-dependent gating of the prokaryotic channel. In addition, our results imply that the region encompassing Phe(401)-Phe(404) in Shaker is involved in protein-protein interactions with the voltage sensor, and signal to the Phe(401) in the S5 segment as a key molecular determinant to pair the voltage sensor and the pore domain.  相似文献   

12.
We have investigated the effects of a mild oxidant, chloramine-T(CT), on the sodium and potassium currents of squid axons under voltage-clamp conditions. Sodium channel inactivation of squid giant axons can be completely removed by CT at neutral pH. Internal and external CT treatment are both effective. CT apparently removes inactivation in an irreversible, all-or-none manner. The activation process of sodium channels is little affected, as judged from the voltage dependence of peak sodium currents, the rising phase of sodium currents, and the time course of tail currents following the repolarization. The removal of inactivation by CT is pH-dependent; higher pH decreases the removal rate, whereas lower pH increases it. Internal metabisulfite, a strong reductant, does not protect inactivation from the action of external CT, nor does external metabisulfite protect from internal CT application. CT slightly depresses the peak potassium currents at comparable concentrations but has no apparent effects on their kinetics. Our results suggest that the neutral form of CT modifies an embedded methionine residue that is involved in sodium channel inactivation.  相似文献   

13.
S D Demo  G Yellen 《Neuron》1991,7(5):743-753
Following voltage-dependent activation, Drosophila Shaker K+ channels enter a nonconducting, inactivated state. This process has been proposed to occur by a "ball-and-chain" mechanism, in which the N-terminus of the protein behaves like a blocker tethered to the cytoplasmic side of the channel and directly occludes the pore to cause inactivation. To complement the ample evidence for the involvement of the N-terminus, we sought evidence that it blocks the pore directly. We found that inactivation exhibits several distinctive properties of pore blockade. First, recovery was speeded by increased external K+ concentrations, just as blockade can be relieved by trans-permeant ions. Second, single-channel experiments show that the channel reopens from the inactivated state upon repolarization. These openings were usually required for recovery, as though the blocking particle must exit the pore before the channel can close.  相似文献   

14.
15.
The effects of n-octanol and n-decanol on nerve membrane sodium channels were examined in internally perfused, voltage-clamped squid giant axons. Both n-octanol and n-decanol almost completely eliminated the residual sodium conductance at the end of 8-ms voltage steps. In contrast, peak sodium conductance was only partially reduced. This block of peak and residual sodium conductance was very reversible and seen with both internal and external alkanol application. The differential sensitivity of peak and residual conductance to alkanol treatment was eliminated after internal pronase treatment, suggesting that n-octanol and n-decanol enhance the normal inactivation mechanism rather than directly blocking channels in a time-dependent manner.  相似文献   

16.
The pentapeptide KIFMK, which contains three clustered hydrophobic amino acid residues of isoleucine, phenylalanine, and methionine (IFM) in the sodium channel inactivation gate on the cytoplasmic linker between domains III and IV (III-IV linker), is known to restore fast inactivation to the mutant sodium channels having a defective inactivation gate or to accelerate the inactivation of the wild-type sodium channels. To investigate the docking site of KIFMK and to clarify the mechanisms for restoring the fast inactivation, we have studied the interactions between KIFMK and the fragment peptide in the III-IV linker GGQDIFMTEEQK (MP-1A; G1484-K1495 in rat brain IIA) by one- and two-dimensional (1)H-NMR and circular dichroism (CD) spectroscopies. KIFMK was found to increase the helical content of MP-1A in 80% trifluoroethanol (TFE) solution by approximately 11%. A pentapeptide, KIFMT, which can restore inactivation but less effectively than KIFMK, also increased the helical content of MP-1A, but to a lesser extent ( approximately 6%) than did KIFMK. In contrast, KDIFMTK, which is ineffective in restoring inactivation, decreased the helical content ( approximately -4%). Furthermore, we studied the interactions between KIFMK and modified peptides from MP-1A, that is, MP-1NA (D1487N), MP-1QEA (E1492Q), or MP-1EQA (E1493Q). The KIFMK was found to increase the helical content of MP-1EQA to an extent nearly identical to that of MP-1A, whereas it was found to decrease those of MP-1NA and MP-1QEA. These findings mean that KIFMK, by allowing each of the Lys residues to interact with D1487 and E1492, respectively, stabilized the helical structure of the III-IV linker around the IFM residues. This helix-stabilizing effect of KIFMK on the III-IV linker may restore and/or accelerate fast inactivation to the sodium channels having a defective inactivation gate or to wild-type sodium channels.  相似文献   

17.
The pore domain of human voltage-dependent cardiac sodium channel Nav1.5 (hNav1.5) is the crucial binding targets for anti-arrhythmics drugs and some local anesthetic drugs but its three-dimensional structure is still lacking. This has affected the detailed studies of the binding features and mechanism of these drugs. In this paper, we present a structural model for open-state pore domain of hNav1.5 built using single template ROSETTA-membrane homology modeling with the crystal structure of NavMs. The assembled structural models are evaluated by rosettaMP energy and locations of binding sites. The modeled structures of the pore domain of hNav1.5 in open state will be helpful to explore molecular mechanism of a state-dependent drug binding and help designing new drugs.  相似文献   

18.
Eukaryotic voltage-gated sodium channels (VGSCs) are essential for the initiation and propagation of action potentials in electrically excitable cells, and are important pharmaceutical targets for the treatment of neurological disorders such as epilepsy, cardiac arrhythmias, and chronic pain. Evidence suggests that small, hydrophobic, VGSC-blocking drugs can gain access to binding residues within the central cavity of these channels by passing through lateral, lipid-filled “fenestrations” which run between the exterior of the protein and its central pore. Here, we use molecular dynamics simulations to investigate how the size and shape of fenestrations change over time in several bacterial VGSC models and a homology model of Nav1.4. We show that over the course of the simulations, the size of the fenestrations is primarily influenced by rapid protein motions, such as amino acid side-chain rotation, and highlight that differences between fenestration bottleneck-contributing residues are the primary cause of variations in fenestration size between the 6 bacterial models. In the eukaryotic channel model, 2 fenestrations are wide, but 2 are narrow due to differences in the amino acid sequence in the 4 domains. Lipid molecules are found to influence the size of the fenestrations by protruding acyl chains into the fenestrations and displacing amino acid side-chains. Together, the results suggest that fenestrations provide viable pathways for small, flexible, hydrophobic drugs.  相似文献   

19.
The group-specific protein reagents, N-bromacetamide (NBA) and N- bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an all-or-none destruction of the inactivation process at the single channel level in a manner similar to internal perfusion of Pronase. Despite the complete removal of inactivation by NBA, the voltage-dependent activation of sodium channels remains unaltered as determined by (a) sodium current turn-on kinetics, (b) sodium tail current kinetics, (c) voltage dependence of steady-state activation, and (d) sensitivity of sodium channels to external calcium concentration. NBA and NBS, which can cleave peptide bonds only at tryptophan, tyrosine, or histidine residues and can oxidize sulfur- containing amino acids, were directly compared with regard to effects on sodium inactivation to several other reagents exhibiting overlapping protein reactivity spectra. N-acetylimidazole, a tyrosine-specific reagent, was the only other compound examined capable of partially mimicking NBA. Our results are consistent with recent models of sodium inactivation and support the involvement of a tyrosine residue in the inactivation gating structure of the sodium channel.  相似文献   

20.
Fast N-type inactivation of voltage-dependent potassium (Kv) channels controls membrane excitability and signal propagation in central neurons and occurs by a 'ball-and-chain'-type mechanism. In this mechanism an N-terminal protein domain (inactivation gate) occludes the pore from the cytoplasmic side. In Kv3.4 channels, inactivation is not fixed but is dynamically regulated by protein phosphorylation. Phosphorylation of several identified serine residues on the inactivation gate leads to reduction or removal of fast inactivation. Here, we investigate the structure-function basis of this phospho-regulation with nuclear magnetic resonance (NMR) spectroscopy and patch-clamp recordings using synthetic inactivation domains (ID). The dephosphorylated ID exhibited compact structure and displayed high-affinity binding to its receptor. Phosphorylation of serine residues in the N- or C-terminal half of the ID resulted in a loss of overall structural stability. However, depending on the residue(s) phosphorylated, distinct structural elements remained stable. These structural changes correlate with the distinct changes in binding and unbinding kinetics underlying the reduced inactivation potency of phosphorylated IDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号