首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Etoposide is a topoisomerase II poison that is used to treat a variety of human cancers. Unfortunately, 2-3% of patients treated with etoposide develop treatment-related leukemias characterized by 11q23 chromosomal rearrangements. The molecular basis for etoposide-induced leukemogenesis is not understood but is associated with enzyme-mediated DNA cleavage. Etoposide is metabolized by CYP3A4 to etoposide catechol, which can be further oxidized to etoposide quinone. A CYP3A4 variant is associated with a lower risk of etoposide-related leukemias, suggesting that etoposide metabolites may be involved in leukemogenesis. Although etoposide acts at the enzyme-DNA interface, several quinones poison topoisomerase II via redox-dependent protein adduction. The effects of etoposide quinone on topoisomerase IIα-mediated DNA cleavage have been examined previously. Although findings suggest that the activity of the quinone is slightly greater than that of etoposide, these studies were carried out in the presence of significant levels of reducing agents (which should reduce etoposide quinone to the catechol). Therefore, we examined the ability of etoposide quinone to poison human topoisomerase IIα in the absence of reducing agents. Under these conditions, etoposide quinone was ~5-fold more active than etoposide at inducing enzyme-mediated DNA cleavage. Consistent with other redox-dependent poisons, etoposide quinone inactivated topoisomerase IIα when incubated with the protein prior to DNA and lost activity in the presence of dithiothreitol. Unlike etoposide, the quinone metabolite did not require ATP for maximal activity and induced a high ratio of double-stranded DNA breaks. Our results support the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis.  相似文献   

2.
Curcumin, the major active component of the spice turmeric, is recognised as a safe compound with great potential for cancer chemoprevention and cancer therapy. It induces apoptosis, but its initiation mechanism remains poorly understood. Curcumin has been assessed on the human cancer cell lines, TK-10, MCF-7 and UACC-62, and their IC50 values were 12.16, 3.63, 4.28 microM respectively. The possibility of this compound being a topoisomerase II poison has also been studied and it was found that 50 microM of curcumin is active in a similar fashion to the antineoplastic agent etoposide. These results point to DNA damage induced by topoisomerase II poisoning as a possible mechanism by which curcumin initiates apoptosis, and increase the evidence suggesting its possible use in cancer therapy.  相似文献   

3.
Although acetaminophen is the most widely used analgesic in the world, it is also a leading cause of toxic drug overdoses. Beyond normal therapeutic doses, the drug is hepatotoxic and genotoxic. All of the harmful effects of acetaminophen have been attributed to the production of its toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Since many of the cytotoxic/genotoxic events triggered by NAPQI are consistent with the actions of topoisomerase II-targeted drugs, the effects of this metabolite on human topoisomerase IIalpha were examined. NAPQI was a strong topoisomerase II poison and increased levels of enzyme-mediated DNA cleavage >5-fold at 100 microM. The compound induced scission at a number of DNA sites that were similar to those observed in the presence of the topoisomerase II-targeted anticancer drug etoposide; however, the relative site utilization differed. NAPQI strongly impaired the ability of topoisomerase IIalpha to reseal cleaved DNA molecules, suggesting that inhibition of DNA religation is the primary mechanism underlying cleavage enhancement. In addition to its effects in purified systems, NAPQI appeared to increase levels of DNA scission mediated by human topoisomerase IIalpha in cultured CEM leukemia cells. In contrast, acetaminophen did not significantly affect the DNA cleavage activity of the human enzyme in vitro or in cultured CEM cells. Furthermore, the analgesic did not interfere with the actions of etoposide against the type II enzyme. These results suggest that at least some of the cytotoxic/genotoxic effects caused by acetaminophen overdose may be mediated by the actions of NAPQI as a topoisomerase II poison.  相似文献   

4.
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.  相似文献   

5.
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme–DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.  相似文献   

6.
Filamin-A, also called Actin Binding Protein-280, is not only an essential component of the cytoskeleton networks, but also serves as the scaffold in various signaling networks. It has been shown that filamin-A facilitates DNA repair and filamin-A proficient cells are more resistant to ionizing radiation, bleomycin, and cisplatin. In this study, we assessed the role of filamin-A in modulating cancer cell sensitivity to Topo II poisons, including etoposide and doxorubicin. Intriguingly, we found that cells with filamin-A expression are more sensitive to Topo II poisons than those with defective filamin-A, and filamin-A proficient xenograft melanomas have better response to etoposide treatment than the filamin-A deficient tumors. This is associated with more potent induction of DNA double strand breaks (DSBs) by Topo II poisons in filamin-A proficient cells than the deficient cells. Although the expression of filamin-A enables cells a slightly stronger capability to repair DSB, the net outcome is that filamin-A proficient cells bear more DSBs due to the significantly enhanced DSB induction by Topo II poisons in these cells. We further found that filamin-A proficient cells have increased drug influx and decreased drug efflux, suggesting that filamin-A modulates the intra-cellular drug kinetics of Topo II poisons to facilitate the generation of DSB after Topo II poison exposure. These data suggest a novel function of filamin-A in regulating the pharmacokinetics of Topo II poisons, and that the status of filamin-A may be used as a prognostic marker for Topo II poisons based cancer treatments.  相似文献   

7.
Ciprofloxacin (CF), a fluoroquinolone widely used as a potent antimicrobial drug, was evaluated in vivo in mouse bone marrow cells for its ability to induce clastogenicity and DNA damage in terms of increased sister-chromatid exchange (SCE) frequencies. Doses of 0.6, 6 and 20 mg/kg body weight of CF given intraperitoneally induced a positive dose-dependent significant clastogenicity (trend test α ⩽ 0.05), though the effects were not specific for specific phases of the cell cycle.The DNA-damaging effect observed as increased SCE frequencies using doses of 0.15, 0.30, 0.60, 1.2 and 6 mg/kg body weight showed a significant dose-dependent increase (trend test α ⩽ 0.05; lowest effective concentration 1.2 mg/kg of body weight).Compared to a potent eukaryotic DNA topoisomerase type II poison, etoposide (VP-16, 0.5, 1 and 5 mg/kg body weight, given intraperitoneally), ciprofloxacin produced comparable dose-dependent SCE frequency increases. Ciprofloxacin was postulated to be specific for the target DNA gyrase, the prokaryotic homologue of DNA topoisomerase type II enzyme. The present paper along with the existing earlier data strongly suggest that topoisomerase type II and DNA gyrase are physiological targets for the drug action. In view of the present significant in vivo mammalian DNA topoisomerase type II-mediated genotoxicity and clastogenicity data, ciprofloxacin should be administered with caution.  相似文献   

8.
Cadmium (Cd2+) is a highly toxic and carcinogenic metal that is an environmental and occupational hazard. DNA topoisomerase II is an essential nuclear enzyme and its inhibition can result in the formation of genotoxic and recombinogenic DNA double strand breaks. In this study we showed that cadmium chloride strongly inhibited the DNA decatenation activity of human topoisomerase IIα in the low micromolar concentration range and that its inhibitory effects were reduced by glutathione. Because the activity of topoisomerase II is strongly inhibited by thiol-reactive compounds this result suggested that cadmium may be binding to critical topoisomerase II cysteine thiols. Cadmium, however, did not stabilize DNA-topoisomerase II covalent complexes, as measured by the lack of formation of DNA double strand breaks. Hence, it is not likely to be a topoisomerase II poison. Consistent with the idea that cadmium cytotoxicity may be modulated by glutathione levels, buthionine sulfoximine pretreatment to decrease glutathione levels resulted in a greatly increased cadmium-induced cytotoxicity in K562 cells. The results of this study suggest that cadmium may exert some of its cell growth inhibitory, and possibly its toxicity and carcinogenicity, by inhibiting topoisomerase IIα through reaction with critical cysteine thiols.  相似文献   

9.
Cline SD  Jones WR  Stone MP  Osheroff N 《Biochemistry》1999,38(47):15500-15507
Topoisomerase II is the target for several anticancer drugs that "poison" the enzyme and convert it to a cellular toxin by increasing topoisomerase II-mediated DNA cleavage. In addition to these "exogenous topoisomerase II poisons," DNA lesions such as abasic sites act as "endogenous poisons" of the enzyme. Drugs and lesions are believed to stimulate DNA scission by altering the structure of the double helix within the cleavage site of the enzyme. However, the structural alterations that enhance cleavage are unknown. Since abasic sites are an intrinsic part of the genetic material, they represent an attractive model to assess DNA distortions that lead to altered topoisomerase II function. Therefore, the structure of a double-stranded dodecamer containing a tetrahydrofuran apurinic lesion at the +2 position of a topoisomerase II DNA cleavage site was determined by NMR spectroscopy. Three major features distinguished the apurinic structure ( = 0.095) from that of wild-type ( = 0.077). First, loss of base stacking at the lesion collapsed the major groove and reduced the distance between the two scissile phosphodiester bonds. Second, the apurinic lesion induced a bend that was centered about the topoisomerase II cleavage site. Third, the base immediately opposite the lesion was extrahelical and relocated to the minor groove. All of these structural alterations have the potential to influence interactions between topoisomerase II and its DNA substrate.  相似文献   

10.
11.
An intracellular, soluble 1,4-benzoquinone reductase was purified from agitated cultures of Phanerochaete chrysosporium and characterized. The quinone reductase was expressed in cultures grown under both nitrogen-sufficient and nitrogen-limiting (12 and 1.2 mM ammonium tartrate) conditions. The protein was purified to homogeneity by using ammonium sulfate fractionation, hydrophobic interaction, and ion-exchange and blue-agarose affinity chromatographies. The native flavin mononucleotide-containing protein, pI 4.3, has a molecular mass of 44 kDa as determined by gel filtration. The protein has a subunit molecular mass of ^sim22 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The quinone reductase exhibits a broad pH optimum between 5.0 and 6.5 and a temperature optimum of 30(deg)C. The enzyme catalyzes the two-electron reduction of several quinones and other electron acceptors utilizing either NADH or NADPH as an electron donor. The apparent K(infm) for 2-methoxy-1,4-benzoquinone is 2.4 (mu)M, and the apparent k(infcat) is 4.4 x 10(sup5) s(sup-1). Enzyme activity is strongly inhibited by Cibacron blue 3GA and by dicumarol.  相似文献   

12.
13.
Yeast DNA topoisomerase II is encoded by a single-copy, essential gene   总被引:40,自引:0,他引:40  
T Goto  J C Wang 《Cell》1984,36(4):1073-1080
The gene TOP2 encoding yeast topoisomerase II has been cloned by immunological screening of a yeast genomic library constructed in the phage lambda expression vector, lambda gt11. The ends of the message encoded by the cloned DNA fragment were delimited by the Berk and Sharp procedure (S1 nuclease mapping) for the 5' end and mapping of the polyA tail portion of a cDNA fragment for the 3' end. The predicted size of the message agrees with the length of the message as determined by Northern blot hybridization analysis. The identity of the gene was confirmed by expressing the gene in E. coli from the E. coli promoter lac UV5 to give catalytically active yeast DNA topoisomerase II. Disruption of one copy of the gene in a diploid yeast creates a recessive lethal mutation, indicating that the single DNA topoisomerase II gene of yeast has an essential function.  相似文献   

14.
15.
The ubiquinone precursors, 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, were isolated from ubiquinone-deficient mutants of Escherichia coli and identified by nuclear magnetic resonance and mass spectrometry. Mutants accumulating 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone were shown to carry mutations in genes designated ubiE and ubiF, respectively. The ubiE gene was shown to be cotransducible with metE (minute 75) and close to two other genes concerned with ubiquinone biosynthesis. The ubiF gene was located close to minute 16 by cotransduction with the lip, gltA, and entA genes.  相似文献   

16.
17.
Mitochondrial myopathies and encephalopathies can be caused by nucleotide substitutions, deletions or duplications of the mitochondrial DNA (mtDNA). In one such disorder, Kearns-Sayre Syndrome (KSS), large-scale hetero-plasmic mtDNA deletions are often found. We describe a 14-year-old boy with clinical features of KSS, plus some additional features. Analysis of the entire mitochondrial genome by the polymerase chain reaction and Southern blotting revealed a 7864-bp mtDNA deletion, heteroplasmic in its tissue distribution. DNA sequencing established that the deletion was between nucleotides 6238 and 14103, and flanked by a 4-bp (TCCT) direct repeat sequence. Deletions between direct repeats have been hypothesised to occur by a slipped-mismatching or illegitimate recombination event, or following the DNA cleavage action of topoisomerase II. Analysis of the gene sequence in the region surrounding the mtDNA deletion breakpoint in this patient revealed the presence of putative vertebrate topoisomerase II sites. We suggest that direct repeat sequences, together with putative topoisomerase II sites, may predispose certain regions of the mitochondrial genome to deletions.  相似文献   

18.
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To understand the mechanism of irreversible trapping of the topo II-cleavable complex, we have investigated the reactivity of clerocidin per se towards DNA. We show here that the drug is able to nick negatively supercoiled plasmids. DNA cleavage by clerocidin in enzyme-free medium is due to the ability of the drug to form covalent adducts with guanines. Indeed, clerocidin was able to specifically react with short oligonucleotides when the guanines were unpaired and exposed as in bulges or in the single-strand form. The clerocidin epoxy group attacks the nitrogen at position 7 of guanines, leading to strand scission at the modified site. Our findings also demonstrate that trapping of topoisomerases by clerocidin is specific for type II enzymes. The guanine-alkylating ability of clerocidin suggests an unprecedented mechanism of topo II poisoning, according to which the enzyme renders the drug reactive toward DNA by distorting the double-helical structure of the nucleic acid at the cleavage site.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号