首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of single strand cleavage in covalently-closed circular-DNA by the antitumour agent streptonigrin (reduced in situ by NADH) is demonstrated using the ethidium bromide fluorescence assay described previously. The degradation dependent on oxygen is completely inhibited by superoxide dismutase (EC 1.15.1.1) suggesting the intermediacy of the superoxide radical anion in the degradation. However similar complete inhibition of DNA strand breakage by catalase (EC 1.11.1.6) indicates that the hydroxyl radical (formed by interaction of superoxide with hydrogen peroxide) is the primary reactive species. Cupric ion stimulates the cleavage reaction and cobaltous ion has no effect in keeping with model studies using quinolinequinones.  相似文献   

2.
The cytotoxic action of the antitumor antibiotic mitomycin C occurs primarily at the level of DNA. Using highly sensitive fluorescence assays which depend on the enhancement of ethidium fluorescence only when it intercalates duplex regions of DNA, three aspects of mitomycin C action on DNA have been studied: (a) cross-linking events, (b) alkylation without necessarily cross-linking, and (c) strand breakage. Cross-linking of DNA is determined by the return of fluorescence after a heat denaturation step at alkaline pH's. Under these conditions denatured DNA gives no fluorescence. The cross-linking was independently confirmed by S1-endonuclease (EC 3.1.4.-) digestion. At relatively high concentrations of mitomycin the suppression of ethidium fluorescence enhancement was shown not to be due to depurination but rather to alkylation, as a result of losses in potential intercalation sites. A linear relationship exists between binding ratio for mitomycin and loss of fluorescence. The proportional decrease in fluorescence with pH strongly suggests that the alkylation is due to the aziridine moiety of the antibiotic under these conditions. A parallel increase in the rate and overall efficiency of covalent cross-linking of DNA with lower pH suggests that the cross-linking event, to which the primary cytotoxic action has been linked, occurs sequentially with alkylation by aziridine and then by carbamate. Mitomycin C, reduced chemically, was shown to induce single strand cleavage as well as monoaklylation and covalent cross-linking in PM2 covalently closed circular DNA. The inhibition of this cleavage by superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6), and by free radical scavengers suggests that the degradation of DNA observed to accompany the cytotoxic action of mitomycin C is largely due to the free radical O2. In contrast to the behavior of the antibiotic streptonigrin, mitomycin C does not inactivate the protective enzymes superoxide dismutase or catalase. Lastly, mitomycin C is able to cross-link DNA in the absence of reduction at pH 4. This is consistent with the postulated cross-linking mechansims.  相似文献   

3.
A simple method is described in detail for the efficient isolation of high molecular weight covalently closed circular DNA (ccc-DNA) from Agrobacterium. Although this method was developed for isolating ccc-DNA of molecular weights greater than 108 daltons in Agrobacterium, the technique also proves to be useful in isolating ccc-DNA of varying sizes from a variety of other bacteria. The technique involves the shearing and alkali denaturation of the chromosomal DNA, followed by the preferential removal of the single-stranded DNA by phenol extraction. The DNA which remains is largely ccc-DNA. The DNA is then concentrated, and the ccc-DNA is separated from the chromosomal DNA by centrifugation in a cesium chloride-ethidium bromide density gradient. By this technique, ccc-DNA of varying sizes has also been isolated from species of Escherichia, Rhizobium, Citrobacter, and Lactobacillus.  相似文献   

4.
DNA cleavage specificity of a group of cationic metalloporphyrins   总被引:9,自引:0,他引:9  
The ability of a group of water-soluble metalloporphyrins to cleave DNA has been investigated. Incubation of Mn3+, Fe3+, or Co3+ complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2T4MPyP) with DNA in the presence of ascorbate, superoxide ion, or iodosobenzene results in DNA breakage. Comparisons between the rates of porphyrin autodestruction with the rates of strand scission of covalently closed circular PM2 DNA indicate that the porphyrins remain intact during the cleavage process. Analysis of the porphyrin-mediated strand scissions on a 139-base-pair restriction fragment of pBR322 DNA using gel electrophoresis/autoradiography/microdensitometry reveals that the minimum porphyrin cleavage site is (A X T)3. The cleavage pattern within a given site was found to be asymmetric, indicating that porphyrin binding and the strand scission process are highly directional in nature. In addition to an analysis of the mechanism of porphyrin-mediated strand breakage in terms of the DNA cleavage mechanism of methidium-propyl-iron-EDTA and Fe-bleomycin, the potential of the cationic metalloporphyrins as footprinting probes and as new "reporter ligands" for DNA is presented and discussed.  相似文献   

5.
Anaerobically grown Escherichia coli K-12 contain only one superoxide dismutase and that is the iron-containing isozyme found in the periplasmic space. Exposure to oxygen caused the induction of a manganese-containing superoxide dismutase and of another, previously undescribed, superoxide dismutase, as well as of catalase and peroxidase. These inductions differed in their responsiveness towards oxygen. Thus the very low levels of oxygen present in deep, static, aerobic cultures were enough for nearly maximal induction of the manganese-superoxide dismutase. In contrast, induction of the new superoxide dismutase, catalase, and peroxidase required the much higher levels of oxygen achieved in vigorously agitated aerobic cultures. Anaerobically grown cells showed a much greater oxygen enhancement of the lethality of streptonigrin than did aerobically grown cells, in accord with the proposal that streptonigrin can serve as an intracellular source of superoxide. Anaerobically grown cells in which enzyme inductions were prevented by puromycin were damaged by exposure to air. This damage was evidenced both as a decline in viable cell count and as structural abnormalities evident under an electron microscope.  相似文献   

6.
Oxygen Toxicity and the Superoxide Dismutase   总被引:43,自引:18,他引:25  
Oxygen caused an increase in the amount of superoxide dismutase in Escherichia coli B but not in Bacillus subtilis. E. coli B cells, induced by growth under 100% O(2), were much more resistant to the lethal effects of 20 atm of O(2) than were cells which contained the low uninduced level of this enzyme. In contrast, B. subtilis, which could not respond to O(2) by increasing its content of superoxide dismutase, remained equally sensitive to hyperbaric O(2) whether grown under 100% O(2) or areobically. The catalase in these organisms exhibited a reciprocal response to oxygen. Thus, the catalase of E. coli B was not induced by O(2), whereas that of B. subtilis was so induced. These results are consistent with the view that superoxide dismutase is an important component of the defenses of these organisms against the toxicity of oxygen, whereas their catalases are of secondary importance in this respect. The ability of streptonigrin to generate O(2) (-), by a cycle of reduction followed by spontaneous reoxidation, has been verified in vitro. It is further observed that E. coli B which contain the high induced level of superoxide dismutase were more resistant to the lethality of this antibiotic, in the presence of oxygen, than were E. coli B which contained the low uninduced level of this enzyme. This difference between induced and uninduced cells was eliminated by the removal of O(2). These results are consistent with the proposal that the enhanced lethality of streptonigrin under aerobic conditions may relate to its in vivo generation of O(2) (-) by a cycle of reduction and spontaneous reoxidation. In toto, these observations lend support to the hypothesis that O(2) (-) is an important agent of oxygen toxicity and that superoxide dismutase functions to blunt the threat posed by this reactive radical.  相似文献   

7.
The culture medium of Pseudomonas BAL 31 contains endonuclease activities which are highly specific for single-stranged DNA and for the single-stranded or weakly hydrogen-bonded regions in supercoiled closed circular DNA. Exposure of nicked DNA to the culture medium results in cleavage of the strang opposite the sites of preexisting single-strand scissions. At least some of the linear duplex molecules derived by cleavage of supercoiled closed circular molecules contain short single-stranded ends. Single-strand scissions are not introduced into intact, linear duplex DNA or unsupercoiled covalently closed circular DNA. Under these same reaction conditions, 0X174 phage DNA is extensively degraded and PM2 form I DNA is quantitatively converted to PM2 form III linear duplexes. Prolonged exposure of this linear duplex DNA to the concentrated culture medium reveals the presence of a double-strand exonuclease activity that progressively reduces the average length of the linear duplex. These nuclease activities persist at ionic strengths up to 4 M and are not eliminated in the presence of 5% sodium dodecyl sulfate. Calcium and magnesium ion are both required for optimal activity. Although the absence of magnesium ion reduces the activities, the absence of calcium ion irreversibly eliminates all the activities.  相似文献   

8.
Uptake studies with [14C]picolinate and 55Fe3+ have provided an explanation for the change in streptonigrin killing on adaptation of Escherichia coli to picolinate, in terms of the available iron within the cell. When picolinic acid is added to a growing culture of E. coli an interval of bacteriostasis ensues; this adaptation period is followed by resumption of exponential growth. Addition of picolinate (4 mM) to a log phase culture of strain W3110 gave protection from the lethal action of streptonigrin (30 microM) when the two agents were added simultaneously. In contrast streptonigrin killed cells that had adapted to picolinate; however, a preincubation of adapted W3110 with phenethyl alcohol protected the cells from streptonigrin lethality. [14C]Picolinate uptake studies showed that initially picolinate entered the cells, but that it was excluded from adapted cells; addition of phenethyl alcohol permitted the entry of picolinate into adapted W3110. The changes in streptonigrin killing parallel the changes in concentration of intracellular picolinate, which can chelate the iron required by streptonigrin for its bactericidal action. 55Fe3+ uptake studies showed that initially picolinate prevented iron accumulation by strain W3110, whereas adapted cells did take up iron in the presence of picolinate. Addition of phenethyl alcohol prevented any observed uptake of iron by adapted W3110. This modulation of iron transport by picolinate also affects streptonigrin lethality. Experiments with iron transport mutants showed that picolinate acted on both the enterochelin and citrate routes of uptake. Therefore picolinate affects the concentration of available iron within the cell both by (a) its intracellular presence resulting in chelation of iron and (b) its action on iron uptake; these effects explain the change in streptonigrin killing on adaptation of E. coli to picolinate.  相似文献   

9.
The lethal action of streptonigrin on strains of Escherichiacoli is greatly enhanced by citrate (10?2 M). Desferrioxamine (2×10?4 M), when added with streptonigrin and citrate, eliminates the citrate enhancement. These observations point to a role for iron in the bactericidal mechanism of streptonigrin. Extracellular citrate is known to promote the acquisition of iron by E.coli by delivering it as a ferric citrate complex to a specific transport apparatus on the cell envelope. Therefore, it may promote action of streptonigrin by increasing the intracellular concentration of available iron. Desferrioxamine, which forms a much stronger complex with ferric ion than does citrate, would be expected to suppress the ferric citrate effect, and this was observed.  相似文献   

10.
The generation of oxygen reduction products by Neisseria gonorrhoeae FA1090 upon exposure to streptonigrin (SNG) and paraquat (PQ2+) and their toxicity was examined. N. gonorrhoeae exhibited maximal cyanide-insensitive respiration, which was employed as an indicator of superoxide (O2-) formation, in the presence of 0.064 mM streptonigrin and 90 mM PQ2+, respectively. Using the concentrations of SNG and PQ2+ described above, complete lethality (greater than 10(8) cells/ml) was observed among cells exposed to SNG, whereas PQ2+ reduced viability by only 3 logs. In an attempt to determine the oxygen radical species generated by gonococci when exposed to SNG, dimethyl sulfoxide, Fe3+, KCN, and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), we were able to detect .OH manifested as the methyl adduct (DMPO-CH3). The production of the latter species was not inhibited by catalase, suggesting intracellular .OH generation. When PQ2+ was substituted for SNG, only low levels of DMPO-CH3 were observed, the production of which ceased within 8 min. SNG and PQ2+, added to a O2(-)- generating system in the presence of Fe3+, promoted increased .OH generation. The iron chelator diethyl-enetriaminepentaacetic acid enhanced the generation of spin-trapped .OH and O2- in the presence of PQ2+. The addition of catalase to this system, however, eliminated the DMPO-CH3 signal, showing that the .OH in this system was extracellular. PQ2+-mediated generation of extracellular .OH in the presence of Fe3+-diethylenetriaminepentaacetic acid EDTA did not enhance the killing of gonococci by PQ2+. These data show that the lethality of SNG relative to PQ2+ is due to the inherent ability of SNG to catalyze the formation of critical levels of intracellular .OH, detectable through the use of spin trapping techniques.  相似文献   

11.
H2O2 was shown to reduce the copper ion of native bovine Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) (ECu2+) and to oxidize the reduced enzyme (ECu+). The time-course of these processes was monitored by NMR measurement of the longitudinal relaxation rate of the water protons. A steady-state characterized by the same ratio [ECu2+]/[( EC2+] + [ECu+]) was obtained either by starting from the oxidized or the reduced enzyme. The kinetics of these processes appear to be quite complex, since different reactions between H2O2, or its reaction products, and the enzyme-bound copper control the reaction rate. The solution of the differential equations describing the kinetic processes showed that the oxidation and the reduction of the copper ion by H2O2 are first-order with respect to the copper ion itself only when these processes approach the steady-state. The rate constants of the reduction and oxidation reactions were calculated according to these equations and were found to have comparable values which are in the range 5-80 and 5-45 M-1.min-1, respectively, changing the pH from 5.6 to 7 at 0.21 M ionic strength. This result, together with the dependence of the reaction rates on pH and ionic strength, points to HO2- as the reactive species in both processes, and indicates that the electrostatic control of the access of the peroxide to the active site is the rate-determining step of the two redox reactions.  相似文献   

12.
Borrelia burgdorferi, the causative agent of Lyme disease, exists in nature through a complex life cycle involving ticks of the Ixodes genus and mammalian hosts. During its life cycle, B. burgdorferi experiences fluctuations in oxygen tension and may encounter reactive oxygen species (ROS). The key metalloenzyme to degrade ROS in B. burgdorferi is SodA. Although previous work suggests that B. burgdorferi SodA is an iron-dependent superoxide dismutase (SOD), later work demonstrates that B. burgdorferi is unable to transport iron and contains an extremely low intracellular concentration of iron. Consequently, the metal cofactor for SodA has been postulated to be manganese. However, experimental evidence to support this hypothesis remains lacking. In this study, we provide biochemical and genetic data showing that SodA is a manganese-dependent enzyme. First, B. burgdorferi contained SOD activity that is resistant to H(2)O(2) and NaCN, characteristics associated with Mn-SODs. Second, the addition of manganese to the Chelex-treated BSK-II enhanced SodA expression. Third, disruption of the manganese transporter gene bmtA, which significantly lowers the intracellular manganese, greatly reduced SOD activity and SodA expression, suggesting that manganese regulates the level of SodA. In addition, we show that B. burgdorferi is resistant to streptonigrin, a metal-dependent redox cycling compound that produces ROS, and that SodA plays a protective role against the streptonigrin. Taken together, our data demonstrate the Lyme disease spirochete encodes a manganese-dependent SOD that contributes to B. burgdorferi defense against intracellular superoxide.  相似文献   

13.
The reduced antitumor antibiotic mitomycin C in aqueous solution exposed to air gives a 36-line electron spin resonance spectrum of the semiquinone identified by computer simulation. Incubation of this radical with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) gives the PBN.OH nitroxide radical identified by independent generation. This nitroxide radical is also formed from similar treatment of a DNA to which mitomycin C is covalently attached. Incubation of the semiquinone from mitomycin C, mitomycin B, or streptonigrin (SN) with catalase or with superoxide dismutase inhibits the generation of OH, implying the intermediacy of H2O2 and O2 in its formation. The formation of the spin-trapped nitroxide radical is similarly inhibited by EDTA, suggesting the intermediacy of trace metal ions in the generation of hydroxyl radicals from SN. The results are consistent with the generation by the aminoquinone antibiotics in vivo of OH. already implicated in the degradation of DNA.  相似文献   

14.
Adherence to extracellular matrix proteins modulates the functional and secretory activities of mononuclear phagocytes, although the mechanisms regulating these adherence-dependent changes are poorly understood. In this study, the ability of rat inflammatory peritoneal macrophages (PM) to adhere to an endothelial cell-derived extracellular matrix or a denatured collagen/fibronectin-coated surface and perform antibody dependent cell cytotoxicity (ADCC) and secrete reactive oxygen intermediates was compared with PM adherent to tissue culture plastic. Prostaglandin E2 (PGE2) and thromboxane B2 (TxB2), two major cyclooxygenase products released by inflammatory macrophages, were also measured by PM adherent to the protein coated surfaces. Rat exudate PM were equally adherent to tissue culture plastic or wells coated with either endothelial cell derived matrix or denatured collagen (gelatin)/fibronectin. PM adherent to a denatured collagen/fibronectin-coated wells demonstrated significantly less cytolytic activity (15 +/- 2% lysis) when compared with either tissue culture plastic adherent PM (43 +/- 7% lysis) or PM adherent to extracellular matrix (59 +/- 11% lysis). PM adherent to extracellular matrix released twofold more TxB2 than plastic adherent PM, while PM adherent to denatured collagen/fibronectin released 40% more PGE2 than cells adherent to tissue culture plastic or 80% more PGE2 than PM adherent to the extracellular matrix. PM adherent to denatured collagen/fibronectin release less superoxide anion (27 +/- .9 nmoles/10(6) PM) than PM adherent to either tissue culture plastic (43 +/- 1 nmoles/10(6) PM) or the extracellular matrix (60 +/- 0.5 nmoles/10(6) PM). Furthermore, incubation of plastic adherent PM with exogenous PGE2 reduced superoxide production in a dose-dependent manner. These results demonstrate that the inhibition of ADCC and secretion of reactive oxygen intermediates by PM adherent to a denatured collagen/fibronectin surface correlated with an increased release of the immunosuppressive prostanoid PGE2. Furthermore, the addition of exogenous PGE2 to plastic adherent PM reproduced the depression in ADCC and superoxide anion production observed by PM adherent to a denatured collagen/fibronectin surface. These studies suggest that the increased production and release of PGE2 by inflammatory macrophages adherent to a denatured collagen surface may act to suppress cytotoxic mechanisms and thereby constitutes part of an autocrine feedback mechanism regulating macrophage function during wound injury.  相似文献   

15.
A sensitive high-resolution electron diffraction assay for change in structure is described and harnessed to analyze the binding of divalent cations to the purple membrane (PM) of Halobacterium halobium. Low-dose electron diffraction patterns are subject to a matched filter algorithm (Spencer, S. A., and A. A. Kossiakoff. 1980. J. Appl. Crystallogr. 13:563-571). to extract accurate values of reflection intensities. This, coupled with a scheme to account for twinning and specimen tilt in the microscope, yields results that are sensitive enough to rapidly quantitate any structure change in PM brought about by site-directed mutagenesis to the level of less than two carbon atoms. Removal of tightly bound divalent cations (mainly Ca2+ and Mg2+) from PM causes a color change to blue and is accompanied by a severely altered photocycle of the protein bacteriohodopsin (bR), a light-driven proton pump. We characterize the structural changes that occur upon association of 3:1 divalent cation to PM, versus membranes rendered purple by addition of excess Na+. High resolution, low dose electron diffraction data obtained from glucose-embedded samples of Pb2+ and Na+ reconstituted PM preparations at room temperature identify several sites with total occupancy of 2.01 +/- 0.05 Pb2+ equivalents. The color transition as a function of ion concentration for Ca2+ or Mg2+ and Pb2+ are strictly comparable. A (Pb2(+)-Na+) PM Fourier difference map in projection was synthesized at 5 A using the averaged data from several nominally untilted patches corrected for twinning and specimen tilt. We find six major sites located on helices 7, 5, 4, 3, 2 (nomenclature of Engelman et al. 1980. Proc. Natl. Acad. Sci. USA. 77:2023-2027) in close association with bR. These partially occupied sites (0.55-0.24 Pb2+ equivalents) represent preferential sites of binding for divalent cations and complements our earlier result by x-ray diffraction (Katre et al. 1986. Biophys. J. 50:277-284).  相似文献   

16.
Spectrofluorimetric and spectrophotometric studies were done to understand the binding of hematoporphyrin, a photosensitizer to horseradish peroxidase (EC1.11.1.7). The binding affinity constant (K) decreases as the state of aggregation of the porphyrin increases, while the number of binding sites (approximately 1) remains unchanged. The interaction appears to be mostly hydrophobic, entropy-driven and endothermic process. Hematoporphyrin potentiates horseradish peroxidase-catalyzed H2O2-mediated NADH oxidation, probably by porphyrin-influenced removal of superoxide radicals, which are generated in the system. Conformational change of the protein due to its interaction with porphyrin may be associated with potentiation of the catalytic activity of the enzyme.  相似文献   

17.
A homogeneous preparation of venom phosphodiesterase from Crotalus adamanteus possesses an intrinsic endonuclease activity, specific for superhelical (form I) and single-stranded DNA. The phosphodiesterase degrades single-stranded T7 DNA by endonucleolytic cleavages. Duplex T7 DNA is hydrolyzed by the liberation of acid-soluble products simultaneously from the 3' and 5' termini but without demonstrable internal scissions in duplex regions. Since venom phosphodiesterase is known to hydrolyze oligonucleotides stepwise from the 3' termini, the cleavage at the 5' end of duplex T7 DNA is ascribed to an endonuclease activity. Form I PM2 DNA is nicked to yield first relaxed circles and then linear DNA which is subsequently hydrolyzed only from the chain termini. The linear duplex DNA intermediates consist of a discrete series of fragments (11 are usually resolved on agarose gels) with initial molecular weights ranging from 6.3 x 10(6) (the intact PM2 DNA size) to approximately 1 x 10(6). The cleavage of the form I molecule must, therefore, occur at a limited number of unique sites. The enzyme also cleaves nonsuperhelical, covalently closed circular PM2 DNA but at a 10(4) times slower rate. Both the endonuclease activity on form I DNA and the known exonuclease activity co-migrate on polyacrtkanude gels, are optimally active at pH 9, are stimulated by small concentrations of Mg2+, and are similarly inactivated by heat, reducing agents, and EDTA.  相似文献   

18.
Exposure to particulate matter (PM) associated with air pollution remains a major public health concern, as it has been linked to significant increase in cardiopulmonary morbidity and mortality. Lung endothelial cell (EC) dysfunction is one of the hallmarks of cardiovascular events of lung exposure to PM. However, the role of PM in acute lung injury (ALI) exacerbation and delayed recovery remains incompletely understood. This study tested a hypothesis that PM augments lung injury and EC barrier dysfunction via microtubule-dependent mechanisms. Our data demonstrate that in pulmonary EC PM caused time- and dose-dependent remodeling of actin cytoskeleton and considerable destabilization of the microtubule (MT) network. These events led to the weakening of cell junctions and formation of actin stress fibers, resulting in disruption of lung EC monolayer and increased permeability. PM also caused ROS-dependent activation of MT-specific deacetylase, HDAC6. Suppression of HDAC6 activity by pharmacological inhibitors or siRNA-based depletion of HDAC6 abolished PM-induced EC permeability increase, which was accompanied by reduced activation of stress kinase signaling, inhibition of Rho cascade, decreased IL-6 production and suppressed activation of its downstream target STAT3. Pretreatment of pulmonary EC with IL-6 inhibitor led to inhibition of STAT3 activity and decreased PM-induced hyper-permeability. Because one of the major activators of Rho-GTPase, GEFH1, is localized on the MT, we examined its involvement in PM-caused EC barrier compromise. Inhibition of GEF-H1 activation significantly attenuated PM-induced permeability increase. Moreover, combined inhibition of IL-6 and GEF-H1 signaling exhibited additive protective effect. Taken together, these results demonstrate a critical involvement of MT-associated signaling in the PM-induced exacerbation of lung EC barrier compromise and inflammatory response.  相似文献   

19.
Hypusine synthesis in the eukaryotic initiation factor 5A is a unique two-step posttranslational modification. After deoxyhypusine is generated by the deoxyhypusine synthase, the deoxyhypusine hydroxylase (EC 1.14.99.29) catalyzes the formation of mature hypusine. A rapid assay for monitoring the deoxyhypusine hydroxylase activity was established, employing the oxidative cleavage of the hypusyl residue and subsequent extraction of the generated aldehydes. As metal ion chelators have been reported to inhibit the deoxyhypusine hydroxylase, the mechanism of this inhibition and the effect of transition metal ions on the enzyme activity were investigated. A ferric ion appears to be essential for enzymatic activity, the inhibition of which is entirely attributed to the metal ion bunding capacity of the chelators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号