首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general prediction of the specialist/generalist paradigm indicates that plant responses to insect herbivores may depend on the degree of ecological specialization of the insect attacker. However, results from a single greenhouse experiment evaluating the responses of the model plant Arabidopsis thaliana to three specialist (Plutella xylostella, Pieris rapae, and Brevicoryne brassicae) and three generalist (Trichoplusia ni, Spodoptera exigua, and Myzus persicae) insect species did not support the previous prediction. Using an ecological genomic approach, we assessed plant responses in terms of herbivore-induced changes in genome-wide gene expression, defense-related pathways, and concentrations of glucosinolates (i.e., secondary metabolites that are ubiquitously present in cruciferous plants). Our results showed that plant responses were not influenced by the degree of specialization of insect herbivores. In contrast, responses were more strongly shaped by insect taxa (i.e., aphid vs. lepidopteran species), likely due to their different feeding modes. Interestingly, similar patterns of plant responses were induced by the same insect herbivore species in terms of defense signaling (jasmonic acid pathway), aliphatic glucosinolate metabolism (at both the gene expression and phenotypic levels) and genome-wide responses. Furthermore, plant responses to insect herbivores belonging to the same taxon (i.e., four lepidopteran species) were not explained by herbivore specialization or phylogenetic history. Overall, this study suggests that different feeding modes of insect taxa as well as herbivore-specific plant responses, which may result from distinct ecological/evolutionary interactions between A. thaliana (or a close relative) and each of the lepidopteran species, may explain why observed responses deviate from those predicted by the specialist/generalist paradigm.  相似文献   

2.
Theoretically, induced defenses should be prevalent within low resource environments like the forest understory where constitutive defenses would be costly. Also, the induced response should be stronger when the herbivore is a generalist rather than a specialist, which often have mechanisms to avoid or overcome plant defenses. These ideas have been previously tested for herbaceous species, and we examined these predictions in Lindera benzoin (spicebush), a common woody shrub of the eastern deciduous forest. Lindera benzoin plants in contrasting light environments served as control plants or were subjected to one of four treatments: application of jasmonic acid, clipping, herbivory by the specialist Epimecis hortaria (tulip tree beauty) and herbivory by the generalist Spodoptera exigua (beet armyworm). Following treatment, we assessed induced responses by measuring leaf chemistry (C/N ratio, protein content, and peroxidase activity), and by using insect bioassays with E. hortaria larvae. We found no difference in peroxidase activity between light environments in controls, plants treated with clipping or jasmonic acid. In plants subject to insect herbivory, peroxidase activity was greater in shade plants than in sun plants. The magnitude of this increase in the shade varied between the herbivores, with a 32 fold increase in plants exposed to the generalist S. exigua and a 9 fold increase in plants exposed to the specialist E. hortaria . Leaves from shade plants had more protein and lower C/N ratios than leaves from sun plants, regardless of induction treatment. In control plants, E. hortaria larvae consumed more leaf biomass and achieved greater final weights in the sun than in the shade, but these differences disappeared with induction treatments were applied. These results are among the first to show rapid induction in a woody plant, and different levels of induction with light environments and with specialist versus generalist herbivores.  相似文献   

3.
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.  相似文献   

4.
Herbivory‐induced responses in plants can both negatively affect subsequently colonizing herbivores and mitigate the effect of herbivory on the host. However, it is still less known whether plants exhibit specific responses to specialist and generalist herbivores in non‐secondary metabolite traits and how specificity to specialists and generalists differs between invasive and native plant populations. We exposed an invasive plant, Alternanthera philoxeroides, to Agasicles hygrophila (Coleoptera, Chrysomelidae; specialist), Spodoptera litura (Lepidoptera, Noctuidae; generalist), manual clipping, or application of exogenous jasmonic acid and examined both the specificity of elicitation in traits of fitness (e.g., aboveground biomass), morphology (e.g., root:shoot ratio), and chemistry (e.g., C/N ratio and lignin), and specificity of effect on the subsequent performance of A. hygrophila and S. litura. Then, we assessed variation of the specificity between invasive and native populations (USA and Argentina, respectively). The results showed S. litura induced higher branching intensity and specific leaf area but lower C/N ratio than A. hygrophila, whereas A. hygrophila induced higher trichome density than S. litura. The negative effect of induction on subsequent larval growth was greater for S. litura than for A. hygrophila. Invasive populations had a weaker response to S. litura than to A. hygrophila in triterpenoid saponins and C/N ratio, while native populations responded similarly to these two herbivores. The specific effect on the two herbivores feeding on induced plants did not vary between invasive and native populations. Overall, we demonstrate specificity of elicitation to specialist and generalist herbivores in non‐secondary metabolite traits, and that the generalist is more susceptible to induction than the specialist. Furthermore, chemical responses specific to specialist and generalist herbivores only exist in the invasive populations, consistent with an evolutionary change in specificity in the invasive populations.  相似文献   

5.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   

6.
7.
Herbivore feeding may induce an array of responses in plants, and each response may have its own temporal dynamics. Precise timing of these plant responses is vital for them to have optimal effect on the herbivores feeding on the plant. This study measured the temporal dynamics of various systemically induced responses occurring in Brassica juncea (L.) Czern. (Brassicaceae) leaves after insect herbivory in India and The Netherlands. Morphological (trichomes, leaf size) and chemical (glucosinolates, amino acids, sugars) responses were analysed. The effects of systemic responses were assessed using a specialist [Plutella xylostella L. (Lepidoptera: Plutellidae)] and a generalist [Spodoptera litura Fabricius (Lepidoptera: Noctuidae)] herbivore. We tested the hypotheses that morphological responses were slower than chemical responses and that generalist herbivores would be more affected by induced responses than specialists. Glucosinolates and trichomes were found to increase systemically as quickly as 4 and 7 days after herbivore damage, respectively. Amino acids, sugars, and leaf size remained unaffected during this period. The generalist S. litura showed a significant feeding preference for undamaged leaves, whereas the specialist herbivore P. xylostella preferred leaves that were damaged 9 days before. Performance bioassays on generalist S. litura revealed that larvae gained half the weight on leaves from damaged plants as compared to larvae feeding on leaves from undamaged plants. These studies show that although morphological responses are somewhat slower than chemical responses, they also contribute to induced plant resistance in a relatively short time span. We argue that before considering induced responses as resistance factors, their effect should be assessed at various points in time with both generalist and specialist herbivores.  相似文献   

8.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

9.
1. Phytochemical coevolution theory, a long-standing paradigm in plant–insect interactions, predicts that specialist herbivores are less negatively affected by the allelochemicals of their host plants than are generalist herbivores. Although this theory is prevalent in plant–insect science, it is not always supported by empirical studies measuring the performance of specialist and generalist insects in response to allelochemicals. 2. The present study aimed to investigate: (i) whether there a difference between specialist and generalist performance in response to allelochemicals and (ii) whether the effect of allelochemicals on specialists and generalists depend upon allelochemical class or insect order. 3. A meta-analysis was conducted incorporating 76 effect sizes drawn from studies that directly compared the performance of specialist and generalist insects in response to treatment and control diets. Most of the effect sizes were related to the performance metric growth, the insect order Lepidoptera, and the allelochemical class nitrogen-containing compounds. 4. As predicted by phytochemical coevolution theory, specialist insects responded less negatively to allelochemicals of their hosts than generalist insects in terms of growth. There were no significant differences in terms of fecundity or survival, or among allelochemical classes or insect orders. 5. These results support the prediction of phytochemical coevolution theory that specialist insects respond less negatively to allelochemicals of their hosts than generalists, although only in terms of growth.  相似文献   

10.
Induced plant responses to herbivory appear to be universal, yet the degree to which they are specific to sets of herbivores is poorly understood. The generalist/specialist hypothesis predicts that generalist herbivores are more often negatively affected by host plant defenses, wheras specialists may be either unaffected by or attracted to these same "plant defenses". Therefore, specialists should be less predictable than generalists in their responses to induced plant resistance traits. To better understand the variation in plant responses to herbivore attack, and the impacts these responses have on specialist herbivores, we conducted a series of experiments examining pairwise interactinos between two specialaist herbivores of the common milkweed ( Asclepias syriaca ). We damaged plants mechnically, with swamp milkweed beetles ( Labidomera clivicollis ), or with monarchs ( Danaus plexippus ), and then asessed specificity of elicitation, both by measuring a putative defensive trait (latex volume) and by challenging plants with insects of both species in bioasays. Latex production increased by 34% and 13% following beetle and monarch herbivory, respectively, but only beetles significantly elevated latex production compared to undamaged controls. While beetle growth was negatively affected by latex across all experiments, beetles were not affected by previous damage caused by conspecifies or by monarchs. In contrast, monarchs feeding on previously damaged plants were 20% smaller, and their response was the same on plants damaged mechnically or by either herbivore. Therefore, these specialist herbivores exhibit both specificity of elicitation in plant responses and specificity of effects in response to prior damage.  相似文献   

11.
Glucosinolates (GLS) are secondary plant metabolites that as a result of tissue damage, for example due to herbivory, are hydrolysed into toxic compounds that negatively affect generalist herbivores. Specialist herbivores have evolved specific adaptations to detoxify GLS or inhibit the formation of toxic hydrolytic products. Although rarely studied, GLS and their breakdown products may also affect parasitoids. The objectives were to test the effects of GLS in a multitrophic system consisting of the generalist herbivore Spodoptera exigua, the specialist herbivore Pieris rapae, and the endoparasitoid Hyposoter ebeninus. Three ecotypes of Arabidopsis thaliana that differ in their GLS composition and concentrations and one transformed line that constitutively produces higher concentrations of aliphatic GLS were used, the latter allowing a direct assessment of the effects of aliphatic GLS on insect performance.Feeding by the generalist S. exigua and the specialist P. rapae induced both higher aliphatic and indole GLS concentrations in the A. thaliana ecotypes, although induction was stronger for indole than aliphatic GLS. For both herbivores a negative correlation between performance and aliphatic GLS concentrations was observed. This suggests that the specialist, despite containing a nitrile-specifier protein (NSP) that diverts GLS degradation from toxic isothiocyanates to less toxic nitriles, cannot completely inhibit the formation of toxic GLS hydrolytic products, or that the costs of this mechanism are higher at higher GLS concentrations. Surprisingly, performance of the parasitoid was positively correlated with higher concentrations of aliphatic GLS in the plant, possibly caused by negative effects on host immune responses. Our study indicates that GLS can not only confer resistance against herbivores directly, but also indirectly by increasing the performance of the parasitoids of these herbivores.  相似文献   

12.
Cyanogenic glucosides (CNglcs) are widespread plant defence compounds releasing toxic hydrogen cyanide when hydrolysed by specific β-glucosidases after plant tissue damage. In contrast to specialist herbivores that have mechanisms to avoid toxicity from CNglcs, it is generally assumed that non-adapted herbivores are negatively affected by CNglcs. Recent evidence, however, implies that the defence potential of CNglcs towards herbivores may not be as effective as previously anticipated. Here, performance, metabolism and excretion products of insects not adapted to CNglcs were analysed, including species with different degrees of dietary specialisation (generalists, specialists) and different feeding modes (leaf-snipping lepidopterans, piercing-sucking aphids). Insects were reared either on cyanogenic or acyanogenic plants or on an artificial cyanogenic diet. Lepidopteran generalists (Spodoptera littoralis, Spodoptera exigua, Mamestra brassicae) were compared to lepidopteran glucosinolate-specialists (Pieris rapae, Pieris brassicae, Plutella xylostella), and a generalist aphid (Myzus persicae) was compared to an aphid glucosinolate-specialist (Lipaphis erysimi). All insects were tolerant to cyanogenic plants; in lepidopterans tolerance was mainly due to excretion of intact CNglcs. The two Pieris species furthermore metabolized aromatic CNglcs to amino acid conjugates (Cys, Gly, Ser) and derivatives of these, which is similar to the metabolism of benzylglucosinolates in these species. Aphid species avoided uptake of CNglcs during feeding. Our results imply that non-adapted insects tolerate plant CNglcs either by keeping them intact for excretion, metabolizing them, or avoiding uptake.  相似文献   

13.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

14.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

15.
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect‐responsive genes after challenge with caterpillars, suggesting that egg‐derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA‐deficient mutant sid2‐1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross‐talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg‐induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.  相似文献   

16.
When plants are sequentially attacked by multiple herbivores, herbivore identity and host specialization can greatly influence the patterns of herbivore–herbivore and plant–herbivore interactions. However, how prior herbivory and the resulting induced plant responses potentially affect subsequent herbivores deserves further investigation. In this study, we conducted a common-garden experiment that manipulated sequential herbivory by the specialist caterpillar Gadirtha fusca Pogue (Lepidoptera: Nolidae) and the generalist caterpillar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae). We tested how prior exposure to herbivores with different levels of host specialization affected the performance of subsequently arriving con- and heterospecifics, as well as plant growth and defense responses under subsequent herbivory. We found that prior exposure to the specialist G. fusca facilitated the performance of subsequent conspecifics, resulting in a significant decrease in the growth (height and stem diameter at ground level) of tallow plants. However, prior exposure to the generalist S. litura did not affect the feeding of subsequent con- or heterospecifics or the growth of tallow plants. Sequential herbivory by specialist and generalist conspecifics resulted in lower levels of tannins and flavonoids, respectively, in leaves of tallow plants, whereas sequential herbivory by the two species did not affect the levels of tannins or flavonoids, compared to a single damage event. We conclude that herbivore species-specific plant responses appear to be more important than herbivore identity or specialization in determining herbivore–herbivore interactions and plant responses to sequential herbivore attack.  相似文献   

17.
Abstract. 1. Although both genotype and induced responses affect a plant's resistance to herbivores, little is known about their relative and interactive effects. This study examined how plant genotype of a native plant (Oenothera biennis) and induced plant responses to herbivory affect resistance to, and interactions among, several herbivores. 2. In a field experiment, genetic and environmental variation among habitats led to variation in the amount of early season damage and plant quality. The pattern of variation in early season infestation by spittlebugs (Philaenus spumarius, a piercing–sucking herbivore) negatively correlated with oviposition preference by a later feeding specialist weevil (Tyloderma foveolatum, a leaf‐chewer). 3. To determine if plant genotype and induced responses to herbivory might be responsible for these field patterns, we performed no‐choice and choice bioassays using four genotypes of O. biennis that varied in resistance. Plants were induced by either spittlebugs or weevils and assays measured the responses of the same specialist weevil as well as a generalist caterpillar (Spodoptera exigua). 4. Resistance to adult weevils was largely unaffected by plant genotype, while they experienced induced resistance following damage by conspecific weevils in no‐choice assays. Caterpillars were more strongly affected by plant genotype than induced responses in both no‐choice and choice assays, but they also fed less and experienced higher mortality on plants previously damaged by weevils. In contrast to the pattern suggested by the field experiment, spittlebugs did consistently induce resistance against either weevils or caterpillars in the bioassay experiment. 5. These results support recent findings that show herbivore species can compete via induced plant responses. Additionally, a quantitative review of the literature demonstrates that plant genotype tends to be more important than interspecific competition among herbivores (plant‐mediated or otherwise) in affecting herbivore preference and performance.  相似文献   

18.
Clonal plant networks consist of interconnected individuals (ramets) of different sizes and ages. They represent heterogeneous ramet assemblages with marked differences in quality and attractiveness for herbivores. Here, feeding preferences of a generalist herbivore (Spodoptera exigua) for differently-aged ramets of Trifolium repens were studied, and changes in herbivore preference in response to systemic defense induction were investigated. Dual-choice tests were used to assess the preference of herbivores for young versus mature ramets of induced and uninduced plants, respectively. Additionally, leaf traits related to nutrition, biomechanics and chemical defense were measured to explain variation in tissue quality and herbivore preference. Young ramets were heavily damaged in control plants. After systemic defense induction, damage on young ramets was greatly reduced, while damage on mature ramets increased slightly. Defense induction increased leaf strength and thickness, decreased leaf soluble carbohydrates and substantially changed phenolic composition of undamaged ramets connected to attacked individuals. Systemic induced resistance led to a more dispersed feeding pattern among ramets of different ages. It is proposed that inducible defense acts as a risk-spreading strategy in clonal plants by equalizing herbivore preference within the clone, thereby avoiding extended selective feeding on valuable plant tissues.  相似文献   

19.
Exotic plants bring with them traits that evolved elsewhere into their new ranges. These traits may make them unattractive or even toxic to native herbivores, or vice versa. Here, interactions between two species of specialist (Pieris rapae and P. brassicae) and two species of generalist (Spodoptera exigua and Mamestra brassicae) insect herbivores were examined on two native crucifer species in the Netherlands, Brassica nigra and Sinapis arvensis, and an exotic, Bunias orientalis. Bu. orientalis originates in eastern Europe and western Asia but is now an invasive pest in many countries in central Europe. P. rapae, P. brassicae and S. exigua performed very poorly on Bu. orientalis, with close to 100% of larvae failing to pupate, whereas survival was much higher on the native plants. In choice experiments, the pierid butterflies preferred to oviposit on the native plants. Alternatively, M. brassicae developed very poorly on the native plants but thrived on Bu. orientalis. Further assays with a German Bu. orientalis population also showed that several specialist and generalist herbivores performed very poorly on this plant, with the exception of Spodoptera littoralis and M. brassicae. Bu. orientalis produced higher levels of secondary plant compounds (glucosinolates) than B. nigra but not S. arvensis but these do not appear to be important factors for herbivore development. Our results suggest that Bu. orientalis is a potential demographic ‘trap’ for some herbivores, such as pierid butterflies. However, through the effects of an evolutionary ‘lottery’, M. brassicae has found its way through the plant’s chemical ‘minefield’.  相似文献   

20.
Zong N  Wang CZ 《Planta》2007,226(1):215-224
Plants respond differently to damage by different herbivorous insects. We speculated that sibling herbivorous species with different host ranges might also influence plant responses differently. Such differences may be associated with the diet breadth (specialization) of herbivores within a feeding guild, and the specialist may cause less intensive plant responses than the generalist. The tobacco Nicotinana tabacum L. is the common host plant of a generalist Helicoverpa armigera (Hübner) and a specialist H. assulta Guenée (Lepidoptera, Noctuidae). The induced responses of tobacco to feeding of these two noctuid herbivores and mechanical wounding were compared. The results showed that the feeding of the specialist H. assulta and the generalist H. armigera resulted in the same inducible defensive system, but response intensity of plants was different to these two species. Inductions of jasmonic acid (JA), lipoxygenase (LOX), and proteinase inhibitors (PIs) were not significantly different concerning these two species, but H. assulta caused the less intensive foliar polyphenol oxidase (PPO) increase, more intensive nicotine and peroxidase (POD) increases in tobacco than H. armigera. The defensive response of plant to herbivores with different diet breadth seems to be more complicated than we expected, and the specialist does not necessarily cause less intensive plant responses than the generalist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号