首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of trehalose in wild type cells of Escherichia coli and Salmonella typhimurium has been investigated. Intact cells of Escherichia coli (grown on trehalose) accumulated [14C]-trehalose as [14C]-trehalose 6-phosphate. Toluene-treated cells catalyzed the synthesis of the [14C]-sugar phosphate from [14C]-trehalose and phosphoenolpyruvate; ATP did not serve as phosphoryl donor. Trehalose 6-phosphate could subsequently be hydrolyzed by trehalose 6-phosphate hydrolase, an enzyme which catalyzes the hydrolysis of the disaccharide phosphate into glucose and glucose 6-phosphate. Both Escherichia coli and Salmonella typhimurium induced this enzyme when they grew on trehalose.These findings suggest that trehalose is transported in these bacteria by an inducible phosphoenolpyruvate:trehalose phosphotransferase system.The presence of a constitutive trehalase was also detected.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanosulfonic acid - PEP phosphoenolpyruvate - PTS phosphoenolpyruvate: glycose phosphotransferase system - O.D. optical density  相似文献   

2.
In the yeast Saccharomyces cerevisiae, the synthesis of endogenous trehalose is catalyzed by a trehalose synthase complex, TPS, and its hydrolysis relies on a cytosolic/neutral trehalase encoded by NTH1. In this work, we showed that NTH2, a paralog of NTH1, encodes a functional trehalase that is implicated in trehalose mobilization. Yeast is also endowed with an acid trehalase encoded by ATH1 and an H+/trehalose transporter encoded by AGT1, which can together sustain assimilation of exogenous trehalose. We showed that a tps1 mutant defective in the TPS catalytic subunit cultivated on trehalose, or on a dual source of carbon made of galactose and trehalose, accumulated high levels of intracellular trehalose by its Agt1p-mediated transport. The accumulated disaccharide was mobilized as soon as cells entered the stationary phase by a process requiring a coupling between its export and immediate extracellular hydrolysis by Ath1p. Compared to what is seen for classical growth conditions on glucose, this mobilization was rather unique, since it took place prior to that of glycogen, which was postponed until the late stationary phase. However, when the Ath1p-dependent mobilization of trehalose identified in this study was impaired, glycogen was mobilized earlier and faster, indicating a fine-tuning control in carbon storage management during periods of carbon and energy restriction.  相似文献   

3.
Escherichia coli can use the nonreducing disaccharide trehalose as a sole source of carbon and energy. Trehalose transport into the cell is mediated via the phosphotransferase system, and a mutant depleted in the nonspecific proteins enzyme I, HPr, and enzyme IIIGlc of this system was not only unable to grow on glucose or mannitol but also was strongly reduced in its ability to grow on trehalose. A pseudorevertant (PPA69) of such a deletion mutant was isolated that could again grow on glucose but not on mannitol. This revertant could now also use trehalose as a carbon source due to a constitutive galactose permease. PPA69 was subjected to Tn10 insertional mutagenesis, and a mutant (UE5) was isolated that no longer could use trehalose as a carbon source but could still grow on glucose. UE5 lacked a periplasmic trehalase that was present in PPA69. P1-mediated transduction of this Tn10 insertion (treA::Tn10) into a pts+ wild-type strain (MC4100) had no effect on the ability of MC4100 to grow on trehalose but resulted in loss of the periplasmic trehalase activity. The Tn10 insertion was mapped at 26 min on the E. coli linkage map and was 3% cotransducible with trp, in the order treA::Tn10, trp, cys. Trehalase activity in MC4100 was not induced by growth in the presence of trehalose but increased by about 10-fold when 0.6 M sucrose was added to minimal growth medium. Using the in vivo mini-Mu cloning system and growth on trehalose as selection, we cloned the treA gene. A 9-kilobase EcoRI fragment containing treA was subcloned into pBR322. Strains carrying this plasmid (pTRE5) contained about 100-fold higher periplasmic trehalase activity than PPA69 or MC4100. Using polyacrylamide gel electrophoresis, we found a protein of molecular weight 58,000 among the periplasmic proteins of the pTRE5-carrying strain that was absent in UE5. This protein was purified by ammonium sulfate precipitation and DEAE-Sepharose ion-exchange chromatography and contained all the trehalase activity. Minicells containing the treA+ plasmid produced, in addition to three other proteins, the 58,000-dalton protein. Thus, the plasmid carries the structural gene for the periplasmic trehalase and not just a gene involved in the regulation of the enzyme.  相似文献   

4.
Transport of trehalose in Salmonella typhimurium.   总被引:10,自引:4,他引:6       下载免费PDF全文
We have studied trehalose uptake in Salmonella typhimurium and the possible involvement of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in this process. Two transport systems could recognize and transport trehalose, the mannose PTS and the galactose permease. Uptake of trehalose via the latter system required that it be expressed constitutively (due to a galR or galC mutation). Introduction of a ptsM mutation, resulting in a defective IIMan/IIIMan system, in S. typhimurium strains that grew on trehalose abolished growth on trehalose. A ptsG mutation, eliminating IIGlc of the glucose PTS, had no effect. In contrast, a crr mutation that resulted in the absence of IIIGlc of the glucose PTS prevented growth on trehalose. The inability of crr and also cya mutants to grow on trehalose was due to lowered intracellular cyclic AMP synthesis, since addition of extracellular cyclic AMP restored growth. Subsequent trehalose metabolism could be via a trehalose phosphate hydrolase, if trehalose phosphate was formed via the PTS, or trehalase. Trehalose-grown cells contained trehalase activity, but we could not detect phosphoenolpyruvate-dependent phosphorylation of trehalose in toluenized cells.  相似文献   

5.
6.
Azuma M  Yamashita O 《Tissue & cell》1985,17(4):539-551
A sorbitol density gradient analysis with the aid of several marker enzymes demonstrated that midgut trehalase of the silkworm larvae. Bombyx mori, was localized in the microsomal membranes, but not in mitochondria, lysosomes and microvilli at the apical surface. Electron microscopic examination showed that trehalase-enriched membrane fraction consisted of heterogeneous mixtures of membrane vesicles derived from the endoplasmic reticulum and plasma membrane parts other than the microvillus membrane. The enzyme-histochemical stains of trehalase activity on the midgut section could be detected only at the basal surface of the epithelium against haemocoel. Such a specific localization was further confirmed by immunohistochemistry with the peroxidase-conjugated antibody technique. Thus, it is concluded that midgut trehalase of silkworm larvae is situated on the plasma membrane at the basal surface of the epithelium. An intact preparation of midgut incubated in vitro in the medium containing [(14)C]trehalose could hydrolyse trehalose into glucose and take it up into the cell, although some glucose was liberated into the medium when incubated for extended periods. These results suggest that midgut trehalase plays a physiological role in utilization of haemolymph trehalose not in nutrient absorption.  相似文献   

7.
At high osmolarity, Escherichia coli synthesizes trehalose intracellularly, irrespective of the nature of the carbon source. Synthesis proceeds via the transfer of UDP-glucose to glucose 6-phosphate, yielding trehalose 6-phosphate, followed by its dephosphorylation to trehalose (H.M. Giaeyer, B.O. Styrvold, I. Kaasen, and A.R. Str?m, J. Bacteriol. 170:2841-2849, 1988). This reaction was exploited to preparatively synthesize [14C]trehalose from exogenous [14C]glucose by using intact bacteria of a mutant (DF214) that could not metabolize glucose. The total yield of radiochemically pure trehalose from glucose was routinely more than 50%.  相似文献   

8.
Heat shock resulted in rapid accumulation of large amounts of trehalose in Saccharomyces cerevisiae. In cultures growing exponentially on glucose, the trehalose content of the cells increased from 0.01 to 1 g/g of protein within 1 h after the incubation temperature was shifted from 27 to 40 degrees C. When the temperature was readjusted to 27 degrees C, the accumulated trehalose was rapidly degraded. In parallel, the activity of the trehalose-phosphate synthase, the key enzyme of trehalose biosynthesis, increased about sixfold during the heat shock and declined to the normal level after readjustment of the temperature. Surprisingly, the activity of neutral trehalase, the key enzyme of trehalose degradation, also increased about threefold during the heat shock and remained almost constant during recovery of the cells at 27 degrees C. In pulse-labeling experiments with [14C]glucose, trehalose was found to be turned over rapidly in heat-shocked cells, indicating that both anabolic and catabolic enzymes of trehalose metabolism were active in vivo. Possible functions of the heat-induced accumulation of trehalose and its rapid turnover in an apparently futile cycle during heat shock are discussed.  相似文献   

9.
Two haploid strains of Saccharomyces cerevisiae viz. MATalpha and MATa were grown in glucose and trehalose medium and growth patterns were compared. Both strains show similar growth, except for an extended lag phase in trehalose grown cells. In both trehalose grown strains increase in activities of both extracellular trehalase activities and simultaneous decrease in extracellular trehalose level was seen. This coincided with a sharp increase in extracellular glucose level and beginning of log phase of growth. Alcohol production was also observed. Secreted trehalase activity was detected, in addition to periplasmic activity. It appeared that extracellular trehalose was hydrolyzed into glucose by extracellular trehalase activity. This glucose was utilized by the cells for growth. The alcohol formation was due to the fermentation of glucose. Addition of extracellular trehalase caused reduction in the lag phase when grown in trehalose medium, supporting our hypothesis of extracellular utilization of trehalose.  相似文献   

10.
Biochemical characterization of a trehalase, detected in the mid-exponential growth phase of Candida utilis NCIM Y500, has indicated that it was a neutral trehalase and possibly the only trehalase present in this strain. Unlike Saccharomyces cerevisiae and other C. utilis strains, this strain without acid trehalase grew quite well in minimal or complete medium containing trehalose as the sole source of carbon. Both these observations were contradictory to the findings reported for acid trehalase mutants of S. cerevisiae and C. utilis. The trehalase system of the strain is suggested to be similar to that of fungi.  相似文献   

11.
B Brand  W Boos 《Applied microbiology》1989,55(9):2414-2415
At high osmolarity, Escherichia coli synthesizes trehalose intracellularly, irrespective of the nature of the carbon source. Synthesis proceeds via the transfer of UDP-glucose to glucose 6-phosphate, yielding trehalose 6-phosphate, followed by its dephosphorylation to trehalose (H.M. Giaeyer, B.O. Styrvold, I. Kaasen, and A.R. Strøm, J. Bacteriol. 170:2841-2849, 1988). This reaction was exploited to preparatively synthesize [14C]trehalose from exogenous [14C]glucose by using intact bacteria of a mutant (DF214) that could not metabolize glucose. The total yield of radiochemically pure trehalose from glucose was routinely more than 50%.  相似文献   

12.
Abstract Independently discovered mutations which alter cyclic-AMP dependent protein kinase activity in Saccharomyces cerevisiae are analysed in relation to trehalose and glycogen storage. The defective trehalose and glycogen accumulation in strains which bear the glc1 mutation results from abnormal activation of trehalase by a protein kinase which has partially lost its cAMP dependence. Cells bearing the bcy1 mutation produce an altered protein kinase due to extremely low levels of the cAMP-binding protein. This altered kinase activates trehalase, resulting in low trehalose contents in these cells. In cell-free extracts of control strains (S288C and 7Q-2D), which produce normal levels of glycogen and trehalose, the enzyme trehalase is mainly found in an inactive, cryptic form. Each of the haploid strains containing one of the mutant genes (glc1, glc4-1 and bcy1) is defective in both trehalose and glycogen accumulation and exhibits low activation ratios of trehalase by protein kinase. Genetic complementation experiments clearly establish that the bcy1 mutation involves a different gene to that altered by the glc1 mutation, since the resulting diploid behaved normally. Strain AM9-10D, previously classified as wild-type (normal for bcy1 ), is defective in the accumulation of trehalose and glycogen and exhibits almost all trehalose in the active form.  相似文献   

13.
Two haploid strains of Saccharomyces cerevisiae viz. MATα and MATa were grown in glucose and trehalose medium and growth patterns were compared. Both strains show similar growth, except for an extended lag phase in trehalose grown cells. In both trehalose grown strains increase in activities of both extracellular trehalase activities and simultaneous decrease in extracellular trehalose level was seen. This coincided with a sharp increase in extracellular glucose level and beginning of log phase of growth. Alcohol production was also observed. Secreted trehalase activity was detected, in addition to periplasmic activity. It appeared that extracellular trehalose was hydrolyzed into glucose by extracellular trehalase activity. This glucose was utilized by the cells for growth. The alcohol formation was due to the fermentation of glucose. Addition of extracellular trehalase caused reduction in the lag phase when grown in trehalose medium, supporting our hypothesis of extracellular utilization of trehalose.  相似文献   

14.
Trehalose Metabolism by Bacillus popilliae   总被引:8,自引:4,他引:4       下载免费PDF全文
Trehalose was found to be utilized more readily than glucose for the growth of Bacillus popilliae NRRL B-2309MC. The pathway of degradation of trehalose was elucidated and found to differ from that reported for other organisms. Trehalase and trehalose phosphorylase activities could not be detected. Rather, trehalose was found to undergo phosphoenolpyruvate (PEP)-dependent phosphorylation, and the resulting trehalose 6-phosphate was cleaved by a phosphotrehalase to equimolar amounts of glucose and glucose 6-phosphate. The phosphotrehalase was purified 34-fold and shown to have a pH optimum of 6.5 to 7.0 and a K(m) for trehalose 6-phosphate of 1.8 mM. A mutant missing the phosphotrehalase failed to grow on trehalose but grew normally on other sugars. The mutant accumulated [(14)C]trehalose as [(14)C]trehalose 6-phosphate. Phosphorylation of trehalose by dialyzed extracts was at least 25 times faster with PEP than with adenosine 5'-triphosphate, and the phosphorylation activity was associated primarily with the particulate fraction. These data and the results of studies of [(14)C]trehalose uptake suggest that trehalose is transported into the cell as trehalose 6-phosphate by a PEP:sugar phosphotransferase system. Cell extracts of other strains of B. popilliae were also found to produce [(14)C]sugar phosphate from [(14)C]trehalose and to have phosphotrehalase activity.  相似文献   

15.
When the localization of mycolic acid biosynthetic activity was examined with Bacterionema matruchotii cells disrupted by the ultrasonic vibration method, activity was detected only in the cell wall fraction, not in the inner membrane nor in the 78,000g supernatant. Either the supernatant or sugar was absolutely required for the incorporation of [14C]palmitate into mycolic acids. Among sugars examined, glucose was most effective, with maltose being second. Unexpectedly, trehalose was inert. As to substrate, the present system utilized free palmitic acid rather than palmitoyl-CoA. The reaction products from palmitate and glucose were glucose mycolate and trehalose monomycolate, in which the label from [14C]palmitate or [14C]glucose was incorporated. Glucose palmitate was also formed. Addition of trehalose resulted in a shift from glucose mycolate to trehalose monomycolate. These data clearly indicate that sugars play an important role in the synthesis of mycolic acids from free fatty acids.  相似文献   

16.
Candida albicans yeast cells growing exponentially on glucose are extremely sensitive to severe heat shock treatments (52.5°C for 5 min). When these cultures were subjected to a mild temperature preincubation (42°C), they became thermotolerant and displayed higher resistance to further heat stress. The intracellular content of trehalose was very low in exponential cells, but underwent a marked increase upon non-lethal heat exposure. The accumulation of trehalose is likely due to heat-induced activation of the trehalose-6-phosphate synthase complex, whereas the external trehalase remained practically unmodified. After a temperature reversion shift (from 42°C to 28°C), the pool of trehalose was rapidly mobilized without any concomitant change in trehalase activity. These results support an important role of trehalose in the mechanism of acquired thermotolerance in C. albicans and seem to exclude the external trehalase as a key enzyme in this process.  相似文献   

17.
In yeast, trehalose accumulation and its hydrolysis, which is catalyzed by neutral trehalase, are believed to be important for thermotolerance. We have shown that trehalose is one of the important factors for barotolerance (resistance to hydrostatic pressure); however, nothing is known about the role of neutral trehalase in barotolerance. To estimate the contribution of neutral trehalase in resisting high hydrostatic pressure, we measured the barotolerance of neutral trehalase I and/or neutral trehalase II deletion strains. Under 180 MPa of pressure for 2 h, the neutral trehalase I deletion strain showed higher barotolerance in logarithmic-phase cells and lower barotolerance in stationary-phase cells than the wild-type strain. Introduction of the neutral trehalase I gene (NTH1) into the deletion mutant restored barotolerance defects in stationary-phase cells. Furthermore, we assessed the contribution of neutral trehalase during pressure and recovery conditions by varying the expression of NTH1 or neutral trehalase activity with a galactose-inducible GAL1 promoter with either glucose or galactose. The low barotolerance observed with glucose repression of neutral trehalase from the GAL1 promoter was restored during recovery with galactose induction. Our results suggest that neutral trehalase contributes to barotolerance, especially during recovery.  相似文献   

18.
Zhao H  Charnley AK  Wang Z  Yin Y  Li Z  Li Y  Cao Y  Peng G  Xia Y 《Journal of biochemistry》2006,140(3):319-327
Trehalose is the main sugar in the haemolymph of insects and is a key nutrient source for an insect pathogenic fungus. Secretion of trehalose-hydrolysing enzymes may be a prerequisite for successful exploitation of this resource by the pathogen. An acid trehalase [EC 3.2.1.28] was purified to homogeneity from a culture of a locust-specific pathogen, Metarhizium anisopliae, and its properties were characterized. The gene (ATM1) of this acid trehalase was also isolated. The pure enzyme can efficiently hydrolyze haemolymph trehalose into glucose in vitro. The new acid trehalase appearing in the haemolymph of Locusta migratoria infected with M. anisopliae had the same pI and substrate specificity as the purified fungal acid trehalase, and the concentration of trehalose in the haemolymph decreased sharply after infection. RT-PCR also revealed the ATM1 gene's expression in the haemolymph of the infected insects. Our results indicated that the acid trehalase may serve as an "energy scavenger" and deplete blood trehalose during fungal pathogenesis.  相似文献   

19.
Trehalose and trehalase in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
Trehalase is ubiquitous in higher plants. So far, indications concerning its function are scarce, although it has been implicated in the detoxification of exogenous trehalose. A putative trehalase gene, T19F6.15, has been identified in the genome sequencing effort in Arabidopsis. Here we show that this gene encodes a functional trehalase when its cDNA is expressed in yeast, and that it is expressed in various plant organs. Furthermore, we present results on the distribution and activity of trehalase in Arabidopsis and we describe how inhibition of trehalase by validamycin A affects the plants response to exogenous trehalose (alpha-D-glucopyranosyl-[1, 1]-alpha-D-glucopyranoside). Trehalase activity was highest in floral organs, particularly in the anthers (approximately 700 nkat g(-1) protein) and maturing siliques (approximately 250 nkat g(-1) protein) and much lower in leaves, stems, and roots (less than 50 nkat g(-1) protein). Inhibition of trehalase in vivo by validamycin A led to the accumulation of an endogenous substance that had all the properties of trehalose, and to a strong reduction in sucrose and starch contents in flowers, leaves, and stems. Thus, trehalose appears to be an endogenous substance in Arabidopsis, and trehalose and trehalase may play a role in regulating the carbohydrate allocation in plants.  相似文献   

20.
Saccharomyces cerevisiae strains lacking phosphoglucose isomerase (pgi1) cannot use the pentose phosphate (PP) pathway to oxidize glucose, which has been explained by the lack of mechanism for reoxidation of the NADPH surplus. Consistent with this, the defective growth on glucose of a ENYpgi1 strain can be partially restored by expressing the Escherichia coli transhydrogenase udhA. In this work it was found that growth of V5 (wine yeast-derived) and FY1679 (isogenic to S288C) pgi1 mutants is not rescued by expression of udhA. Moreover, the flux through the PP pathway of 11 S. cerevisiae strains from various origins was estimated, by calculating the ratio between the enzymatic activity of the G6PDH and HXK, placed at the glycolysis-PP pathway branch point. The results show that ENY.WA-1A exhibited the highest ratio (1.5-3-fold) and the highest G6PDH activity. Overexpression of ZWF1 encoding the G6PDH in V5pgi1udhA did not rescue growth on glucose, suggesting that steps downstream the G6PDH might limit the PP pathway in this strain. As a whole, these data highlight a great intraspecies diversity in the PP pathway capacity among S. cerevisiae strains and suggest that a low capacity may be the prime limiting factor in glucose oxidation through this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号