首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent soil pressurization experiments have shown that stomatal closure in response to high leaf–air humidity gradients can be explained by direct feedback from leaf water potential. The more complex temperature‐by‐humidity interactive effects on stomatal conductance have not yet been explained fully. Measurements of the change in shoot conductance with temperature were made on Phaseolus vulgaris (common bean) to test whether temperature‐induced changes in the liquid‐phase transport capacity could explain these temperature‐ by‐humidity effects. In addition, shoot hydraulic resistances were partitioned within the stem and leaves to determine whether or not leaves exhibit a greater resistance. Changes in hydraulic conductance were calculated based on an Ohm’s law analogy. Whole‐plant gas exchange was used to determine steady‐ state transpiration rates. A combination of in situ psychrometer measurements, Scholander pressure chamber measurements and psychrometric measurements of leaf punches was used to determine water potential differences within the shoot. Hydraulic conductance for each portion of the pathway was estimated as the total flow divided by the water potential difference. Temperature‐induced changes in stomatal conductance were correlated linearly with temperature‐induced changes in hydraulic conductance. The magnitude of the temperature‐induced changes in whole‐plant hydraulic conductance was sufficient to account for the interactive effects of temperature and humidity on stomatal conductance.  相似文献   

2.
The anatomical features of leaves in 11 species of plants grown in a temperature gradient and a temperature + CO2 gradient were studied.The palisade parenchyma thickness,the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of elevated temperature and CO2 on the anatomical characteristics of the leaves.Our results show that with the increase of temperature,the leaf thickness of C4 species increased while the leaf thickness of C3 species showed no constant changes.With increased CO2,seven out of nine C3 species exhibited increased total leaf thickness.In C4 species,leaf thickness decreased.As for the trend on the multi-grades,the plants exhibited linear or non-linear changes.With the increase of temperature or both temperature and CO2 for the 11 species investigated,leaf thickness varied greatly in different plants (species) and even in different branches on the same plant.These results demonstrated that the effect of increasing CO2 and temperature on the anatomical features of the leaves were species-specific.Since plant structures are correlated with plant functions,the changes in leaf anatomical characteristics in elevated temperature and CO2 may lead to functional differences.  相似文献   

3.
Plant hydraulic conductance, namely the rate of water flow inside plants per unit time and unit pressure difference, varies largely from plant to plant and under different environmental conditions. Herein the main factors affecting: (a) the scaling between whole‐plant hydraulic conductance and leaf area; (b) the relationship between gas exchange at the leaf level and leaf‐specific xylem hydraulic conductance; (c) the short‐term physiological regulation of plant hydraulic conductance under conditions of ample soil water, and (d) the long‐term structural acclimation of xylem hydraulic conductance to changes in environmental conditions are reviewed. It is shown that plant hydraulic conductance is a highly plastic character that varies as a result of multiple processes acting at several time scales. Across species ranging from coniferous and broad‐leaved trees to shrubs, crop and herbaceous species, and desert subshrubs, hydraulic conductance scaled linearly with leaf area, as expected from first principles. Despite considerable convergence in the scaling of hydraulic properties, significant differences were apparent across life forms that underlie their different abilities to conduct gas exchange at the leaf level. A simple model of carbon allocation between leaves and support tissues explained the observed patterns and correctly predicted the inverse relationships with plant height. Therefore, stature appears as a fundamental factor affecting gas exchange across plant life forms. Both short‐term physiological regulation and long‐term structural acclimation can change the levels of hydraulic conductance significantly. Based on a meta‐analysis of the existing literature, any change in environmental parameters that increases the availability of resources (either above‐ or below‐ground) results in the long‐term acclimation of a less efficient (per unit leaf area) hydraulic system.  相似文献   

4.
E.-D. Schulze  M. Küppers 《Planta》1979,146(3):319-326
Short-term (hours) changes in plant water status were induced in hazel (Corylus avellana L.) by changing the evaporative demand on a major portion of the shoot while maintaining a branch in a constant environment. Stomatal conductance of leaves on the branch was influenced little by these short-term changes in water status even with changes in leaf water potential as great as 8 bars. Long-term (days) changes in plant water status were imposed by soil drying cycles. Stomatal conductance progessively decreased with increases in long-term water stress. Stomata still responded to humidity with long-term water stress but the range of the conductance response decreased. Threshold responses of stomata to leaf water potential were not observed with either short-term or long-term changes in plant water status even when leaves wilted. It is suggested that concurrent measurements of plant water status may not be sufficient for explaining stomatal and other plant responses to drought.  相似文献   

5.
This study was initiated to investigate effects of damage by 0, 5 and 10 aphids/plant on the physiology of faba bean plants throughout different feeding periods and at two plant development stages. Immediately following removal of Aphis fabae, measurements showed 84–229% increase in transpiration rate. These changes were proportional to the number of aphids and infestation duration. Injury by A. fabae caused the stomatal conductance to be much higher in the leaves of infested plants. Leaf stomatal conductance of the infested plants increased significantly by 51–224% depending on initial aphid densities and feeding intervals. This increase was proportional to the infestation level for each date. Length of infestation period and plant growth stage seemed to have no clear effect on stomatal apertures. Aphid feeding caused a damage of about 7–33% of crude protein levels in the leaf tissue. This reduction increased with increasing infestation levels and time, except for 28‐day‐old plants on 28 days. The physiological effects of aphid feeding on water vapour and chemical composition of damaged leaves are particularly serious when the population is high.  相似文献   

6.
This study quantified stomatal conductance in a CO2-fertilized warm-temperate forest. The study considered five items: (1) the characteristics of the diurnal and seasonal variation, (2) simultaneous measurements of canopy-scale fluxes of heat and CO2 and the normalized difference vegetation index (NDVI), (3) the stomatal conductance of sunlit and shaded leaves, (4) a stomatal conductance model, and (5) the effects of leaf age on stomatal conductance. Sampled plants included evergreen and deciduous species. Stomatal conductance, SPAD, and leaf nitrogen content were measured between March and December 2001. Sunlit leaves had the largest diurnal and seasonal variation in conductance in terms of both magnitude and variability. In contrast, shaded leaves had only low conductance and slight variation. Stomatal conductance increased sharply in new shooting leaves of Quercus serrata until reaching a maximum 2 months after full leaf expansion. The seasonal changes in the canopy-scale heat and CO2 fluxes were similar to the change in the canopy-scale NDVI of the upper-canopy plants. These seasonal changes were correlated with the leaf-level H2O/CO2 exchanges of upper-canopy plants, although these did not represent the stomatal conductance in fall completely. Seasonal variations in the leaf nitrogen content and SPAD were similar, except leaf foliation, until day 130 of the year, when the behaviors were completely the opposite. A Jarvis-type model was used to estimate the stomatal conductance. We modified it to include SPAD as a measure of leaf age. The seasonal variation in stomatal conductance was not as sensitive to SPAD, although estimates for evergreen species showed improvements.  相似文献   

7.
Long-chain normal hydrocarbons (e.g. alkanes, alkenes and dienes) are rare biological molecules and their biosynthetic origins are obscure. Detailed analyses of the surface lipids that accumulate on maize silks have revealed that these hydrocarbons constitute a large portion (>90%) of the cuticular waxes that coat this organ, which contrasts with the situation on maize seedling leaves, where the cuticular waxes are primary alcohols and aldehydes. The normal hydrocarbons that occur on silks are part of a homologous series of alkanes, alkenes and dienes of odd-number carbon atoms, ranging between 19 and 33 in number. The alkenes and dienes consist of a homologous series, each of which has double bonds situated at defined positions of the alkyl chains: alkenes have double bonds situated at the sixth, ninth or 12th positions, and dienes have double bonds situated at the sixth and ninth, or ninth and twelfth positions. Finding a homologous series of unsaturated aldehydes and fatty acids suggests that these alkenes and dienes are biosynthesized by a series of parallel pathways of fatty-acid elongation and desaturation reactions, which are followed by sequential reduction and decarbonylation. In addition, the silk cuticular waxes contain metabolically related unsaturated long-chain methylketones, which probably arise via a decarboxylation mechanism. Finally, metabolite profiling analyses of the cuticular waxes of two maize inbred lines (B73 and Mo17), and their genetic hybrids, have provided insights into the genetic control network of these biosynthetic pathways, and that the genetic regulation of these pathways display best-parent heterotic effects.  相似文献   

8.
A striking coordination is observed in sugarcane between prevailing levels of stomatal opening and the hydraulic capacity of the soil, roots and stem to supply the leaves with water. This coordination of vapor phase and liquid phase conductances is associated with decreases in stomatal conductance on a leaf area basis that compensate for increasing leaf area during canopy development, causing transpiration to approach a maximum value on a per plant or ground area basis rather than increase linearly with leaf area. The resulting balance between water loss and water transport capacity maintains leaf water status remarkably constant over a wide range of plant. sizes and growing conditions. These changes in stomatal conductance during development are determined by changes in the composition of the xylem sap rather than by changes in leaf properties. Changes in boundary layer conductance resulting from non-developmental changes in canopy structure such as loding cause additional changes in stomatal conductance mediated by altered humidity at the leaf surface. These maintain a constant level of total canopy vapor phase conductance (stomatal and boundary layer in series) and a constant level of canopy transpiration. These patterns indicate that stomata exert an active role in regulating transpiration even in dense canopies. This control function is consistent with stomatal metering of transpiration, mediated by fluxes of root-derived materials in the xylem sap.  相似文献   

9.
北京山区落叶阔叶林优势种叶片特点及其生理生态特性   总被引:13,自引:4,他引:13  
荆条、山杏、辽东栎、北京丁香、大叶白蜡、核桃楸等6种植物在不同光照条件下的气孔导度,不同生境下叶片形态参数和叶片解剖特征进行了研究。扫描电子显微镜图片显示这片植物的气孔全着生在远轴面,气孔密度大小是:辽东栎〉山杏〉北京丁香〉核桃楸〉大叶白蜡,方差分析结果显示这5种植物叶片上气孔密度存在极显著差异,且叶片外表微观上差异比较明显。生境不仅影响叶片的气孔密度,而且也导气孔导度的差异,全光照条件下,山杏、  相似文献   

10.
Stomatal density (SD) and stomatal conductance ( g s) can be affected by an increase of atmospheric CO2 concentration. This study was conducted on 17 species growing in a naturally enriched CO2 spring and belonging to three plant communities. Stomatal conductance, stomatal density and stomatal index (SI) of plants from the spring, which were assumed to have been exposed for generations to elevated [CO2], and of plants of the same species collected in a nearby control site, were compared. Stomatal conductance was significantly lower in most of the species collected in the CO2 spring and this indicated that CO2 effects on g s are not of a transitory nature but persist in the long term and through plant generations. Such a decrease was, however, not associated with changes in the anatomy of leaves: SD was unaffected in the majority of species (the decrease was only significant in three out of the 17 species examined), and also SI values did not vary between the two sites with the exception of two species that showed increased SI in plants grown in the CO2-enriched area. These results did not support the hypothesis that long-term exposure to elevated [CO2] may cause adaptive modification in stomatal number and in their distribution.  相似文献   

11.
The anatomical features of leaves in 11 species of plants grown in a temperature gradient and a temperature + CO2 gradient were studied. The palisade parenchyma thickness, the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of elevated temperature and CO2 on the anatomical characteristics of the leaves. Our results show that with the increase of temperature, the leaf thickness of C4 species increased while the leaf thickness of C3 species showed no constant changes. With increased CO2, seven out of nine C3 species exhibited increased total leaf thickness. In C4 species, leaf thickness decreased. As for the trend on the multi-grades, the plants exhibited linear or non-linear changes. With the increase of temperature or both temperature and CO2 for the 11 species investigated, leaf thickness varied greatly in different plants (species) and even in different branches on the same plant. These results demonstrated that the effect of increasing CO2 and temperature on the anatomical features of the leaves were species-specific. Since plant structures are correlated with plant functions, the changes in leaf anatomical characteristics in elevated temperature and CO2 may lead to functional differences.  相似文献   

12.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

13.
对生长在荫棚3种不同光照条件下和全自然光下的热带雨林4个冠层种(望天树、绒毛番龙眼、团花、红厚壳)和3个中层种(玉蕊、藤黄、滇南风吹楠)树苗叶片气孔特征以及它们的可塑性进行了研究、结果表明,这些植物的气孔全部着生在远轴面.7种植物中,玉蕊和绒毛番龙眼的气孔密度较大,滇南红厚壳和团花的保卫细胞最长.随光强的增大,气孔密度和气孔指数增大,单位叶气孔数在低光强下较大.除团花外,其它植物叶片气孔导度在50%光强处最大,而光强对保卫细胞的长度影响不显著.相关分析表明,气孔密度与植物单位叶的面积呈负相关。而与气孔导度的相关性不显著、尽管两种不同生活型植物气孔指数和单位叶气孔数在不同光强下的可塑性差异较小,但冠层树种气孔密度和气孔导度的可塑性显著高于中层树种.  相似文献   

14.
Temperature of leaves or canopies can be used as an indicator of stomatal aperture, which is considered a sensitive response to soil water deficit. In this paper we analyse the robustness and sensitivity of thermal imaging for detecting changes in stomatal conductance and leaf water status in a range of plant species. Thermal imaging successfully distinguished between irrigated and non-irrigated plants of a variety of species under greenhouse or controlled chamber conditions, with strong correlations between thermal indices and stomatal conductance measured by porometry. Our results also highlighted issues that need to be addressed in order to be confident of always detecting drought stress using this technique. These include variability in leaf angles and the limited reliability of 'wet' and 'dry' leaves to represent leaves with stomata fully open or stomata fully closed. These results should assist the design of protocols for application in crop production or ecosystem monitoring.  相似文献   

15.
Nico Blüthgen  Anika Metzner 《Oikos》2007,116(11):1853-1862
Specialist and generalist herbivores may select for different types of plant defences or for different distribution of defences within a plant: e.g. between early and late stages of leaf maturation. The differentiation of age-specific defences is particularly pronounced in tropical rain forests where young leaves are often produced year-round, but effects on feeding choices of tropical herbivores are largely unknown. We compared feeding preferences of four species of tropical stick insects (Phasmida) between young or old leaves in dual choice experiments. Two phasmid species ( Haaniella echinata , Lonchodes cultratolobatus ) were highly polyphagous generalists. The other two species were classified as specialists, with Asceles margaritatus feeding mainly on Mallotus floribundus and M. miquelianus (Euphorbiaceae) and Dinophasma ruficornis mainly on Leea indica (Leeaceae) at the study site. Both specialists significantly preferred young leaves over old leaves of their respective host plants. In contrast, both generalists significantly preferred old leaves of the hosts of the specialist A. margaritatus . To reveal whether differential feeding choices were triggered by foliar chemistry, extracts (water, acetone, and hexane) of young leaves were applied to discs from old leaves and vice versa , and subjected to similar choice tests. For both Mallotus species, experimental results suggest that four chemical functions act in concert: (1) young leaves contain deterrents against generalists and (2) stimulants for specialists. Moreover, (3) old leaves contain deterrents against specialists and (4) stimulants for generalists. Deterrent compounds in young and old leaves, respectively, appeared in extracts using different solvents, suggesting the activity of multiple classes of secondary metabolites. Our study thus reveals that plant defences and herbivore offences are partly structured by leaf ontogeny and herbivore specialisation in a tropical plant-herbivore system.  相似文献   

16.
Isoprene (2-methyl-1,3-butadiene) is one of the major volatile hydrocarbons emitted by plants, but its biosynthetic pathway and role in plant metabolism are unknown. Mucuna sp. (velvet bean) is an isoprene emitter, and leaf isoprene emission rate increased as much as 125-fold as leaves developed, and declined in older leaves. Net CO2 assimilation and stomatal conductance, under different growth and environmental conditions, increased 3 to 5 days prior to an increase in isoprene emission rate, indicating that photosynthetic competence develops before significant isoprene emission occurs.  相似文献   

17.
Summary This study is part of a series of investigations on the influence of altitude on structure and function of plant leaves. Unlike most other mountain areas, the Southern Alps of New Zealand provide localities where physiologically effective moisture stress occurs neither at high nor at low elevation, but the changes in temperature and radiation with elevation are similar or even steeper than in most other regions. In comparison with results from other mountains, where moisture may impair plant functioning at low elevation, this study allows an estimation of the relative role of water for the expression of various leaf features typically associated with alpine plants. Maximum leaf diffusive conductance (g), leaf nitrogen content (LN), stomatal density (n) and distribution, as well as area (A), thickness (d) and specific area (SLA) of leaves were studied. Three different plant life forms were investigated over their full altitudinal range (m): trees, represented by Nothofagus menziesii (1,200 m), ericaceous dwarf shrubs (1,700 m), and herbaceous plants of the genus Ranunculus (2,500 m). In all three life forms g, LN, and n increased, while SLA and A decreased with elevation. Recent investigations have found similar trends in other mountains from the temperate zone, but the changes are larger in New Zealand than elsewhere. Herbs show the greatest differences, followed by shrubs and then trees.It is concluded that g is dependent upon light climate rather than water supply, whereas SLA and related structural features appear to be controlled by the temperature regime, as they show similar altitudinal changes under different light and moisture gradients. The higher leaf nitrogen content found at high elevations in all three life forms, suggests that metabolic activity of mature leaves is not restricted by low nitrogen supply at high altitude. In general, the leaves of herbaceous plants show more pronounced structural and functional changes with altitude than the leaves of shrubs and trees.  相似文献   

18.
The tolerance of lettuce plants (Lactuca sativa L. cv. Romana) to drought stress differed with the arbuscular-mycorrhizal fungal isolate with which the plants were associated. Seven fungal species belonging to the genus Glomus were studied for their ability to enhance the drought tolerance of lettuce plants. These fungi had different traits that affected the drought resistance of host plants. The ranking of arbuscular-mycorrhizal fungal effects on drought tolerance, based on the relative decreases in shoot dry weight, was as follows: Glomus deserticola > Glomus fasciculatum > Glomus mosseae > Glomus etunicatum > Glomus intraradices > Glomus caledonium > Glomus occultum. In this comparative study specific mycorrhizal fungi had consistent effects on plant growth, mineral uptake, the CO(inf2) exchange rate, water use efficiency, transpiration, stomatal conductance, photosynthetic phosphorus use efficiency, and proline accumulation under either well-watered or drought-stressed conditions. The ability of the isolates to maintain plant growth effectively under water stress conditions was related to higher transpiration rates, levels of leaf conductance, and proline, N, and P contents. Differences in proline accumulation in leaves among the fungal symbioses suggested that the fungi were able to induce different degrees of osmotic adjustment. The detrimental effects of drought were not related to decreases in photosynthesis or water use efficiency. Neither of these parameters was related to P nutrition. The differences in P and K acquisition, transpiration, and stomatal conductance were related to the mycorrhizal efficiencies of the different fungi. Our observations revealed the propensities of different Glomus species to assert their protective effects during plant water stress. The greater effectiveness of G. deserticola in improving water deficit tolerance was associated with the lowest level of growth reduction (9%) under stress conditions. The growth of plants colonized by G. occultum was reduced by 70% after a progressive drought stress period. In general, the different protective effects of the mycorrhizal isolates were not associated with colonizing ability. Nevertheless, G. deserticola was the most efficient fungus and exhibited the highest levels of mycorrhizal colonization, as well as the greatest stimulation of physiological parameters.  相似文献   

19.
Samples from a long-term bioremediation experiment contaminated with two crude oils, Arabian Heavy and Gullfax, was used to analyze the compositional change of petroleum hydrocarbons. A time course of five different homologous series of petroleum hydrocarbons were analysed by GC/FID and GC/MS. The homologous series were n-alkanes, acyclic isoprenoids, alkylated naphthalenes, alkylated phenanthrenes, and alkylated dibenzothiophenes. Several biomarker compounds were monitored during the experiment to evaluate the possible use as conserved reference compounds for the quantification of other oil compounds, that is, nor-hopanes, hopanes, methyl-hopanes, steranes, mono- og triaromatic steranes. The 17α(H),21β(H)-hopane was found to be stable toward biodegradation and was used as reference compound. The internal standard quantification method was used to quantify changes of the homologous series of oil compounds, and a graphic presentation was used to compare the decrease of the individual compounds. This was found to be an easy way of comparing relative changes in oil. The disappearance of the compounds was extensive and in 6 to 7 months less than 6% remained. The decrease of the n-alkanes (>C15) and acyclic isoprenoids was almost uniform within each homologous series and thus independent of physical-chemical characteristics. Evaporation affected compounds with boiling points lower than n-C15. The alkylated aromatic and sulfur-aromatic compounds decreased according to the degree of alkylation and the decrease showed to be delayed by 10 to 20% by each additional alkyl group. The lack of isomeric-specific degradation of most of the aromatic and sulfur-aromatic compounds, until extensive decrease in concentration had occurred, suggests these compounds have to be dissolved, before any biodegradation occurs.  相似文献   

20.
毛竹浸提液对苦槠幼苗生长的化感效应   总被引:1,自引:0,他引:1  
为探讨毛竹(Phyllostachys edulis)扩张过程中潜在的化感作用,选择苦槠(Castanopsis sclerophylla(Lindl)Schott)为研究对象。采用水浸提的方法,用毛竹茎叶、枯落物和土壤3部分浸提液浇灌苦槠幼苗,以蒸馏水处理作为对照,对比分析质量浓度分别为0.1、0.05、0.02 g/mL的3个浓度梯度浸提液处理下苦槠幼苗生长指标及各项光合生理指标的差异。结果表明,毛竹浸提液对苦槠幼苗苗高、地径和叶绿素相对含量的影响大体上呈现高浓度抑制低浓度促进的双重浓度效应。不同来源毛竹浸提液的化感效应不尽相同,土壤浸提液对苦槠幼苗生长和光合生理均呈现抑制作用,而茎叶、枯落物浸提液低浓度时为促进作用。毛竹潜在的化感作用,在其扩张过程中可能会干扰森林主要树种更新,从而对森林群落产生威胁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号