首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na(+) absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.  相似文献   

3.
IMP-3, a member of the insulin-like growth factor-II (IGF-II) mRNA-binding protein (IMP) family, is expressed mainly during embryonic development and in some tumors. Thus, IMP-3 is considered to be an oncofetal protein. The functional significance of IMP-3 is not clear. To identify the functions of IMP-3 in target gene expression and cell proliferation, RNA interference was employed to knock down IMP-3 expression. Using human K562 leukemia cells as a model, we show that IMP-3 protein associates with IGF-II leader-3 and leader-4 mRNAs and H19 RNA but not c-myc and beta-actin mRNAs in vivo by messenger ribonucleoprotein immunoprecipitation analyses. IMP-3 knock down significantly decreased levels of intracellular and secreted IGF-II without affecting IGF-II leader-3, leader-4, c-myc, or beta-actin mRNA levels and H19 RNA levels compared with the negative control siRNA treatment. Moreover, IMP-3 knock down specifically suppressed translation of chimeric IGF-II leader-3/luciferase mRNA without altering reporter mRNA levels. Together, these results suggest that IMP-3 knock down reduced IGF-II expression by inhibiting translation of IGF-II mRNA. IMP-3 knock down also markedly inhibited cell proliferation. The addition of recombinant human IGF-II peptide to these cells restored cell proliferation rates to normal. IMP-3 and IMP-1, two members of the IMP family with significant structural similarity, appear to have some distinct RNA targets and functions in K562 cells. Thus, we have identified IMP-3 as a translational activator of IGF-II leader-3 mRNA. IMP-3 plays a critical role in regulation of cell proliferation via an IGF-II-dependent pathway in K562 leukemia cells.  相似文献   

4.
5.
We report the cloning of a novel gene (ID14) and its expression pattern in tadpoles and adults of Xenopus laevis. ID14 encodes a 315-amino acid protein that has a signal peptide and a nidogen domain. Even though several genes have a nidogen domain, ID14 is not the homolog of any known gene. ID14 is a late thyroid hormone (TH)-regulated gene in the tadpole intestine, and its expression in the intestine does not begin until the climax of metamorphosis, correlating with adult intestinal epithelial differentiation. In contrast, ID14 is expressed in tadpole skin and tail and is not regulated by TH. In situ hybridization revealed that this putative extracellular matrix protein is expressed in the epithelia of the tadpole skin and tail and in the intestinal epithelium after metamorphosis. In the adult, ID14 is found predominantly in the intestine with weak expression in the stomach, lung, and testis. Its exclusive expression in the adult intestinal epithelial cells makes it a useful marker for developmental studies and may give insights into cell/cell interactions in intestinal metamorphosis and adult intestinal stem cell maintenance.  相似文献   

6.
We have previously studied the immunohistological localization of the three adhesion molecules L1, N-CAM and J1/tenascin in adult mouse small intestine and shown that L1 expression in epithelial crypt cells underlies the adhesion of these cells to one another [63]. To obtain further insight into the functional roles of L1, N-CAM and J1/tenascin in this organ we studied their expression starting at embryonic day 14 during embryonic and early postnatal morphogenesis and during epithelial cell migration in the adult. Expression of L1 was restricted to neural cells until approximately postnatal day 5, when L1 started to be detectable on crypt but not on villus cells, predominantly on the basolateral membrane infoldings. As in brain, L1-specific mRNA was approximately 6 kb in size. L1 from intestine appears to differ from the brain-derived equivalent in possessing a higher level of glycosylation. N-CAM was detectable from embryonic day 14 onward in neural and also in mesenchymal cells. Expression by smooth muscle cells decreased during development. In the villus core, N-CAM was strongly detectable at contact sites between smooth muscle cells forming the cellular scaffold of the villus. From embryonic day 14 onward, N-CAM appeared in both 180- and 140-kDa forms. J1/tenascin was present in both neural and mesenchymal cells from embryonic day 14 onward. Starting at embryonic day 17, J1/tenascin appeared concentrated at the boundary between mesenchyme and epithelium in an increasing gradient from the crypt base to the villus top. From embryonic day 14 onward J1/tenascin consisted of the 190- and 220-kDa components. J1/tenascin from intestine differed from brain-derived J1 in its carbohydrate composition. These observations show that the three adhesion molecules are expressed by distinct cell populations and may serve as cell-type-specific markers in pathologically altered intestinal tissue.  相似文献   

7.
8.
Caudal-related homeobox (Cdx) proteins play an important role in development and differentiation of the intestinal epithelium. Using cDNA differential display, we identified clusterin as a prominently induced gene in a Cdx2-regulated cellular model of intestinal differentiation. Transfection experiments and DNA-protein interaction assays showed that clusterin is an immediate downstream target gene for Cdx proteins. The distribution of clusterin protein in the intestine was assessed during development and in the adult epithelium using immunohistochemistry. In the adult mouse epithelium, clusterin protein was localized in both crypt and villus compartments but not in interstitial cells of the intestinal mucosa. Together, these data suggest that clusterin is a direct target gene for Cdx homeobox proteins, and the pattern of clusterin protein expression suggests that it is associated with the differentiated state in the intestinal epithelium.  相似文献   

9.
10.
11.
Expression of actin isoforms in developing rat intestinal epithelium   总被引:1,自引:0,他引:1  
A minimum of six very similar but distinct actin isoforms are encoded by the mammalian genome. Developmental regulation of these genes results in a tissue-specific distribution of the isoforms in the adult. Using a panel of actin specific monoclonal antibodies (MAb), we recently reported the expression of two unique actin isoforms in adult rat intestinal brush border. In this report, we examine the developmental expression of these and other actin isoforms in rat intestinal epithelial cells. Isoforms containing the HUC 1-1 and/or C4 epitopes are present by day 15 of gestation and are continuously expressed throughout adult life. Unexpectedly, the gamma-enteric smooth muscle isoactin, defined by the B4 epitope, is transiently expressed in these non-muscle cells late in gestation. The alpha-vascular smooth muscle isoform, however, is not expressed in intestinal epithelial cells during development and, as previously reported, both smooth muscle isoforms are absent in epithelial cells of adult intestine. In addition, we demonstrate that although multiple isoforms are expressed simultaneously in these cells, they are not uniformly distributed at the subcellular level, suggesting that the cell recognizes the actin isoforms as functionally distinct entities.  相似文献   

12.
13.
There are few reliable markers for adult stem cells and none for those of the intestinal epithelium. Previously, indirect experimental approaches have predicted stem cell position and numbers. The Musashi-1 (Msi-1) gene encodes an RNA binding protein associated with asymmetric divisions in neural progenitor cells. Two-day-old, adult, and 4.5 h, 1-, 2-, 4- and 12-day post-irradiation samples of BDF1 mouse small intestine, together with some samples of mouse colon were stained with a rat monoclonal antibody to Musashi-1 (14 H-1). Min ( + / - ) mice with small intestinal adenomas of varying sizes were also analysed. Samples of human small and large bowel were also studied but the antibody staining was weak. Musashi-1 expression was observed using immunohistochemistry in neonatal, adult, and regenerating crypts with a staining pattern consistent with the predicted number and distribution of early lineage cells including the functional stem cells in these situations. Early dysplastic crypts and adenomas were also strongly Musashi-1 positive. In situ hybridization studies showed similar expression patterns for the Musashi mRNA and real-time quantitative RT-PCR showed dramatically more Msi-1 mRNA expression in Min tumours compared with adjacent normal tissue. These observations suggest that Musashi-1 is a marker of stem and early lineage progenitor cells in murine intestinal tissue.  相似文献   

14.
Protein tyrosine kinase 6 (PTK6) (also called Brk or Sik) is an intracellular tyrosine kinase that is expressed in breast cancer and normal epithelial linings. In adult mice, PTK6 expression is high in villus epithelial cells of the small intestine. To explore functions of PTK6, we disrupted the mouse Ptk6 gene. We detected longer villi, an expanded zone of PCNA expression, and increased bromodeoxyuridine incorporation in the PTK6-deficient small intestine. Although differentiation of major epithelial cell types occurred, there was a marked delay in expression of intestinal fatty acid binding protein, suggesting a role for PTK6 in enterocyte differentiation. However, fat absorption was comparable in wild-type and Ptk6-/- mice. It was previously shown that the serine threonine kinase Akt is a substrate of PTK6 and that PTK6-mediated phosphorylation of Akt on tyrosine resulted in inhibition of Akt activity. Consistent with these findings, we detected increased Akt activity and nuclear beta-catenin in intestines of PTK6-deficient mice and decreased nuclear localization of the Akt substrate FoxO1 in villus epithelial cells. PTK6 contributes to maintenance of tissue homeostasis through negative regulation of Akt in the small intestine and is associated with cell cycle exit and differentiation in normal intestinal epithelial cells.  相似文献   

15.
16.
The current study used the human Caco-2 cell line and mouse intestine to explore the topology of expression of the class B type I scavenger receptor (SR-BI) in intestinal cells. Results showed that intestinal cells expressed only the SR-BI isoform with little or no expression of the SR-BII variant. The expression of SR-BI in Caco-2 cells is differentiation dependent, with little or no expression in preconfluent undifferentiated cells. Analysis of Caco-2 cells cultured in Transwell porous membranes revealed the presence of SR-BI on both the apical and basolateral cell surface. Immunoblot analysis of mouse intestinal cell extracts demonstrated a gradation of SR-BI expression along the gastrocolic axis of the intestine, with the highest level of expression in the proximal intestine and decreasing to minimal expression levels in the distal intestine. Immunofluorescence studies with SR-BI-specific antibodies also confirmed this expression pattern. Importantly, the immunofluorescence studies also revealed that SR-BI immunoreactivity was most intense in the apical membrane of the brush border in the duodenum. The crypt cells did not show any reactivity with SR-BI antibodies. The localization of SR-BI in the jejunum was found to be different from that observed in the duodenum. SR-BI was present on both apical and basolateral surfaces of the jejunum villus. Localization of SR-BI in the ileum was also different, with little SR-BI detectable on either apical or basolateral membranes.Taken together, these results suggest that SR-BI has the potential to serve several functions in the intestine. The localization of SR-BI on the apical surface of the proximal intestine is consistent with the hypothesis of its possible role in dietary cholesterol absorption, whereas SR-BI present on the basolateral surface of the distal intestine suggests its possible involvement in intestinal lipoprotein uptake.  相似文献   

17.
We report a high-throughput application of multispectral imaging flow cytometry (MIFC) for analyzing the expression and localization of both RNA and protein molecules in a heterogeneous population of cells. The approach was developed using polyadenylated nuclear (PAN) RNA, an abundant, noncoding RNA expressed by Kaposi's sarcoma-associated herpesvirus (KSHV) during the lytic phase of infection. High levels of PAN RNA are, in part, dependent on its interaction with poly(A)-binding protein C1 (PABPC1), which relocalizes from the cytoplasm to the nucleus of lytically infected cells. We quantitatively tracked the cytoplasmic to nuclear translocation of PABPC1 and examined how this translocation relates to the expression and localization of viral RNA and protein molecules in KSHV-infected cells. This high-throughput approach will be useful for other systems in which changes in subcellular localization of RNA and protein molecules need to be monitored simultaneously.  相似文献   

18.
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号