首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatocyte primary culture/DNA repair test was evaluated for its reliability using a series of coded samples. Among the 30 chemicals tested, 15 were general reference compounds and 15 were chemicals that had been tested for carcinogenicity in the U.S. National Cancer Institute Bioassay Program. The latter group were from the same lot that had been used for the in vivo testing and had also been tested for mutagenicity in the Ames test. From the group of 15 reference compounds, 5 were positive for DNA repair and all 5 were carcinogens. Of the 10 samples scored as negative, 4 were noncarcinogens and 6 were carcinogens. Among the 6 carcinogens were 3 compounds whose carcinogenicity probably does not involve the production of DNA damage. From the 15 coded chemicals that were tested for carcinogenicity by the NCI in long-term animal studies, 7 were scored as positive. 5 of these were judged carcinogenic in the in vivo bioassays and the other 2, which were also mutagenic in Salmonella, showed some indication of carcinogenicity. Of the 8 compounds that were scored as negative, 5 were noncarcinogenic. Among the 3 carcinogens that were not detected, there was at least one whose carcinogenicity probably does not involve DNA damage. Thus, the results of this study indicate that positive results in the hepatocyte primary culture/DNA repair test are highly specific for carcinogens and that the test is also highly sensitive in the detection of DNA-damaging genotoxic carcinogens.  相似文献   

2.
The methodologies and status of the Host-Mediated Assay were reviewed using the published literature available up to June 1980. The Working Group reviewed 274 documents, including abstracts, research articles, review articles, and publicly available contracts and grant final reports. From this group, abstracts and reviews were rejected from critical evaluation. 77 documents were accepted and reviewed by the Working Group and the test results summarized.These selected documents yielded 208 chemicals that were evaluated in the host-mediated assay. Of these chemicals, 133 were mutagenic in this assay with one or more indicators. 76 chemicals, several of which are not considered to be carcinogenic, were not detected by any of the indicators. Of the 208 chemicals, 125 had been tested in carcinogenicity assay in rodents. 90, or 71%, of the carcinogens were detected as mutagens in the Host-Mediated Assay. In several cases, those carcinogens not detected may have been negative because of improper selection of the indicator.The Working Group concluded that the Host-Mediated Assay is an important test in mutagenicity/carcinogenicity research and that, by proper selection of protocols and indicators, valuable information can be gained that otherwise would be overlooked by strict, in vitro assays.  相似文献   

3.
Differential growth inhibition of two E. coli cultures was evaluated as a rapid screening technique for chemical carcinogens. Of the carcinogens tested, only “direct acting” carcinogens produced positive results. Furthermore, this test is not a quantitative assay in that neither was a dose—response relationship seen nor did potent carcinogens necessarily show a greater response than weaker carcinogens.Most of the carcinogens tested are considered to require metabolic activation in order to exert their carcinogenic action. Despite many attempts, including several variations of reaction conditions, metabolic activation by rat liver fractions was not apparent. Many of these carcinogens are insoluble in water and may not diffuse through the agar and therefore not reach the indicator organism.A number of chemicals that are not carcinogenic produced positive results with this assay. Many of these substances are oxidants or oxidation products which are highly reactive with DNA as well as with other cellular constituents. Therefore, it is possible that the toxicity exhibited by these chemicals was caused by a reaction with some essential cellular constituent other than DNA and such damage would not be repairable by DNA polymerase. These observations limit the usefulness of the P3478 E. coli technique in its present form as a prescreen for chemical carcinogens.  相似文献   

4.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

5.
An analysis is presented in which are evaluated correlations among chemical structure, mutagenicity to Salmonella, and carcinogenicity to rats and mice among 301 chemicals tested by the U.S. NTP. Overall, there was a high correlation between structural alerts to DNA reactivity and mutagenicity, but the correlation of either property with carcinogenicity was low. If rodent carcinogenicity is regarded as a singular property of chemicals, then neither structural alerts nor mutagenicity to Salmonella are effective in its prediction. Given this, the database was fragmented and new correlations sought between the derived sub-groups. First, the 301 chemicals were segregated into six broad chemical groupings. Second, the rodent cancer data were partially segregated by target tissue. Using the previously assigned structural alerts to DNA reactivity (electrophilicity), the chemicals were split into 154 alerting chemicals and 147 non-alerting chemicals. The alerting chemicals were split into three chemical groups; aromatic amino/nitro-types, alkylating agents and miscellaneous structurally-alerting groups. The non-alerting chemicals were subjectively split into three broad categories; non-alerting, non-alerting containing a non-reactive halogen group, and non-alerting chemical with minor concerns about a possible structural alert. The tumor data for all 301 chemicals are re-presented according to these six chemical groupings. The most significant findings to emerge from comparisons among these six groups of chemicals were as follows: (a) Most of the rodent carcinogens, including most of the 2-species and/or multiple site carcinogens, were among the structurally alerting chemicals. (b) Most of the structurally alerting chemicals were mutagenic; 84% of the carcinogens and 66% of the non-carcinogens. 100% of the 33 aromatic amino/nitro-type 2-species carcinogens were mutagenic. Thus, for structurally alerting chemicals, the Salmonella assay showed high sensitivity and low specificity (0.84 and 0.33, respectively). (c) Among the 147 non-alerting chemicals less than 5% were mutagenic, whether they were carcinogens or non-carcinogens (sensitivity 0.04).  相似文献   

6.
In 1969, the International Agency for Research on Cancer (IARC) initiated the Monographs Programme to evaluate the carcinogenic risk of chemicals to humans. Results from short-term mutagenicity tests were first included in the IARC Monographs in the mid-1970s based on the observation that most carcinogens are also mutagens, although not all mutagens are carcinogens. Experimental evidence at that time showed a strong correlation between mutagenicity and carcinogenicity and indicated that short-term mutagenicity tests are useful for predicting carcinogenicity. Although the strength of these correlations has diminished over the past 20 years with the identification of putative nongenotoxic carcinogens, such tests provide vital information for identifying potential human carcinogens and understanding mechanisms of carcinogenesis. The short-term test results for agents compiled in the EPA/IARC Genetic Activity Profile (GAP) database over nearly 15 years are summarized and reviewed here with regard to their IARC carcinogenicity classifications. The evidence of mutagenicity or nonmutagenicity based on a 'defining set' of test results from three genetic endpoints (gene mutation, chromosomal aberrations, and aneuploidy) is examined. Recommendations are made for assessing chemicals based on the strength of evidence from short-term tests, and the implications of this approach in identifying mutational mechanisms of carcinogenesis are discussed. The role of short-term test data in influencing the overall classification of specific compounds in recent Monograph volumes is discussed, particularly with reference to studies in human populations. Ethylene oxide is cited as an example.  相似文献   

7.
The published results on 60 chemicals and X-rays investigated in the mouse spot test were compared with data on the same chemicals tested in the bacterial mutation assay (Ames test) and lifetime rodent bioassays. The performance of the spot test as an in vivo complementary assay to the in vitro bacterial mutagenesis test reveals that of 60 agents, 38 were positive in both systems, 6 were positive only in the spot test, 10 were positive only in the bacterial test and 6 were negative in both assays. The spot test was also considered as a predictor of carcinogenesis; 45 chemicals were carcinogenic of which 35 were detected as positive by the spot test and 3 out of 6 non-carcinogens were correctly identified as negative. If the results are regarded in sequence, i.e. that a positive result in a bacterial mutagenicity test reveals potential that may or may not be realized in vivo, then 48 chemicals were mutagenic in the bacterial mutation assay of which 38 were active in the spot test and 31 were confirmed as carcinogens in bioassays. 12 chemicals were non-mutagenic to bacteria of which 6 gave positive responses in the spot test and 5 were confirmed as carcinogens. These results provide strong evidence that the mouse coat spot test is an effective complementary test to the bacterial mutagenesis assay for the detection of genotoxic chemicals and as a confirmatory test for the identification of carcinogens. The main deficiency at present is the paucity of data from the testing of non-carcinogens. With further development and improvement of the test it is probable that the predictive performance of the assay in identifying carcinogens should improve, since many of the false negative responses may be due to inadequate testing.  相似文献   

8.
A set of 189 chemicals tested in the National Toxicology Program Cancer Bioassay was subjected to analysis by CASE, the Computer-Automated Structure Evaluation system. In the data set, 63% of the chemicals were carcinogens, approx. 40% of the carcinogens were non-genotoxic, i.e., they possessed neither "structural alerts" for DNA reactivity as defined by Ashby and Tennant, 1988, nor were they mutagenic for Salmonella. The data base can be characterized as a "combined rodent" compilation as chemicals were characterized as "carcinogenic" if they were carcinogenic in either rats or mice or both. CASE identified 23 fragments which accounted for the carcinogenicity, or lack thereof, of most of the chemicals. The sensitivity and specificity were unexpectedly high: 1.00 and 0.86, respectively. Based upon the identified biophores and biophobes, CASE performed exceedingly well in predicting the activity of chemicals not included among the 189 in the original set. CASE predicted correctly the carcinogenicity of non-genotoxic carcinogens thereby suggesting a structural commonality in the action of this group of carcinogens. As a matter of fact biophores restricted to non-genotoxic carcinogens were identified as were "non-electrophilic" biophores shared by genotoxic and non-genotoxic carcinogens. The findings suggest that the CASE program may help in the elucidation of the basis of the action of non-genotoxic carcinogens.  相似文献   

9.
Johnson FM 《Mutation research》2003,543(3):201-215
High production volume (HPV) chemicals are produced in or imported to the US in amounts greater than 1 million pounds per chemical per year. The EPA has identified thousands of HPVs. Due to their abundance, such chemicals bring a substantial risk for human exposure, and as a result some level of adverse consequences to health are to be expected. In order to examine the potential for cancer risk associated with HPVs, this paper examines HPVs that have been tested in the National Toxicology Program's rodent cancer bioassay. The chemicals tested in the bioassay represent a small sample of the universe of environmental chemicals to which people are exposed. Unexpectedly, 60% of the 128 HPVs evaluated in the bioassay proved to be rodent carcinogens. This value compares to a predicted prevalence of only 16.5% carcinogens in a previous study. The previous study concluded that HPVs were less likely to be toxic by a variety of other test criteria as well. However, the approach involved identifying putative carcinogens using quantitative chemical structure-activity relationships (QSAR) in contrast to the direct tabulation of bioassay test results performed here. Detailed examination of bioassay results reveals that test outcomes depend heavily on route of administration as well as on dose level, sex, strain, and species used. Since most of these factors have little or no apparent relationship to chemical structure, results of this study suggest that QSAR, as well as virtually all other alternative methods, may not generally provide accurate predictions of carcinogenic potential. As we wait for efficient and effective methods for predicting carcinogens to be developed, people continue to be exposed to environmental carcinogens. Progress on regulating environmental carcinogens as well as on developing more effective test methods has been minimal since "war on cancer" began approximately 30 years ago. The present study questions whether the current strategy for dealing with environmental carcinogens will ever be successful. Close examination of rodent cancer test results seems to suggest that almost all chemicals may have carcinogenic potential in some genotypes under some exposure circumstances. If this hypothesis is correct, it would explain the general lack of progress in developing methods to differentiate carcinogens from noncarcinogens. A completely new strategy for dealing with cancer caused by exposures to environmental chemicals seems to be needed.  相似文献   

10.
We have recently developed an alkaline elution/rat hepatocyte assay to sensitively measure DNA single-strand breaks induced by xenobiotics in non-radiolabeled rat hepatocytes. Here we have evaluated this assay as a predictor of carcinogenic/mutagenic activity by testing 91 compounds (64 carcinogens and 27 non-carcinogens) from more than 25 diverse chemical classes. Hepatocytes were isolated from uninduced rats by collagenase perfusion, exposed to chemicals for 3 h, harvested, and analyzed for DNA single-strand breaks by alkaline elution. DNA determinations were done fluorimetrically. Cytotoxicity was estimated by glutamate-oxaloacetate transaminase release or by trypan blue dye exclusion. The assay correctly predicted the reported carcinogenic/non-carcinogenic potential of 92% of the carcinogens tested and 85% of non-carcinogens tested. The assay detected a number of compounds, including inorganics, certain pesticides, and steroids, which give false-negative results in other short-term tests. Only 2 rat liver carcinogens were incorrectly identified; the other carcinogens incorrectly identified are weakly or questionably carcinogenic (i.e., they cause tumors only in one species, after lifetime exposure, or at high doses). Some chemicals cause DNA damage only at cytotoxic concentrations; of 16 such compounds in this study, 12 are weak carcinogens suggesting a link between DNA damage caused by cytotoxicity and carcinogenesis. Our data indicate that this assay rapidly, reproducibly, sensitively, and accurately detects DNA single-strand breaks in rat hepatocytes and that the production of these breaks correlates well with carcinogenic and mutagenic activity.  相似文献   

11.
A current concern with in vitro mammalian cell genotoxicity testing is the high frequency of false or misleading positive results caused in part by the past use of excessively high test concentrations. A dataset of 249 industrial chemicals used in Japan and tested for genotoxicity was analyzed. Of these, 116 (46.6%) were positive in the in vitro chromosomal aberration (CA) test, including 6 that were positive only at test concentrations >10mM. There were 59 CA-positive chemicals at test concentrations ≤ 1mM. At >1mM, 51 chemicals were CA-positive, including 13 Ames-positive chemicals, which were therefore not "missed" by the test battery. Thus, 38 potentially positive chemicals would not have been detected in the test battery if the top test concentration was limited to 1mM in CA test. Analysis of the relevance of CA results on the 38 missed chemicals was conducted based on a weight of evidence approach, including evaluations of effects of extreme culture conditions (low pH, high toxicity, or precipitation), in silico structural alert analysis, in vivo genotoxicity and carcinogenicity test data (where available), mode of action, or information from closely related chemicals. After an exhaustive review, there were four chemicals with some concern for human health risk assessment, nine with minimal concern, and the remaining 25 with negligible concern. We apply different top concentrations to the 38 missed chemicals to identify the most accurate approach for predicting the genotoxicity of industrial chemicals. Of these 2mM or 1mg/mL, whichever is higher, was the most effective in detecting these chemicals, i.e., relatively higher (8/13) or lower (17/25) detection among 13 chemicals with some or minimal concern, or 25 with negligible concern, respectively. Lower top concentration limits, 1mM or 0.5mg/mL, whichever is higher, are not as effective (2/13) for detecting these chemicals with concern. Therefore, we conclude 2mM or 1mg/mL, whichever is higher, would be an appropriate top concentration limit for testing industrial chemicals for chromosome damage.  相似文献   

12.
46 chemicals of diverse classes and structures, including 30 known animal carcinogens, were evaluated for prophage-inducing ability using the Escherichia coli inductest with lysogenic strain GY5027 envA - uvrB- and indicator strain GY4015 ampR . The inductest detected 9 of 30 known carcinogens as genotoxic agents, including 3 polycyclic hydrocarbons, 2 aflatoxins, and 2 antitumor antimicrobials. Among the 21 carcinogens ineffective as prophage inducers were 3 aromatic amines (other than 2-aminoanthracene), 3 azo-aminoazo compounds, 2 methanesulfonates, and 2 nitro aromatics. In contrast, 18 and 17 of the 30 animal carcinogens were detected as genotoxic agents in the Salmonella/Ames test and E. coli WP2/ WP100 rec assay, respectively. The threshold sensitivity of the inductest was less than that of the Salmonella/Ames test for chemicals genotoxic in both tests. The ineffectiveness of the inductest as a routine test for detecting potential chemical carcinogens may be related to the nature of the DNA damage lesions formed by various genotoxic agents.  相似文献   

13.
The idea that synthetic chemicals such as DDT are major contributors to human cancer has been inspired, in part, by Rachel Carson's passionate book, Silent Spring. This chapter discusses evidence showing why this is not true. We also review research on the causes of cancer, and show why much cancer is preventable.Epidemiological evidence indicates several factors likely to have a major effect on reducing rates of cancer: reduction of smoking, increased consumption of fruits and vegetables, and control of infections. Other factors are avoidance of intense sun exposure, increases in physical activity, and reduction of alcohol consumption and possibly red meat. Already, risks of many forms of cancer can be reduced and the potential for further reductions is great. If lung cancer (which is primarily due to smoking) is excluded, cancer death rates are decreasing in the United States for all other cancers combined.Pollution appears to account for less than 1% of human cancer; yet public concern and resource allocation for chemical pollution are very high, in good part because of the use of animal cancer tests in cancer risk assessment. Animal cancer tests, which are done at the maximum tolerated dose (MTD), are being misinterpreted to mean that low doses of synthetic chemicals and industrial pollutants are relevant to human cancer. About half of the chemicals tested, whether synthetic or natural, are carcinogenic to rodents at these high doses. A plausible explanation for the high frequency of positive results is that testing at the MTD frequently can cause chronic cell killing and consequent cell replacement, a risk factor for cancer that can be limited to high doses. Ignoring this greatly exaggerates risks. Scientists must determine mechanisms of carcinogenesis for each substance and revise acceptable dose levels as understanding advances.The vast bulk of chemicals ingested by humans is natural. For example, 99.99% of the pesticides we eat are naturally present in plants to ward off insects and other predators. Half of these natural pesticides tested at the MTD are rodent carcinogens. Reducing exposure to the 0.01% that are synthetic will not reduce cancer rates. On the contrary, although fruits and vegetables contain a wide variety of naturally-occurring chemicals that are rodent carcinogens, inadequate consumption of fruits and vegetables doubles the human cancer risk for most types of cancer. Making them more expensive by reducing synthetic pesticide use will increase cancer. Humans also ingest large numbers of natural chemicals from cooking food. Over a thousand chemicals have been reported in roasted coffee: more than half of those tested (19/28) are rodent carcinogens. There are more rodent carcinogens in a single cup of coffee than potentially carcinogenic pesticide residues in the average American diet in a year, and there are still a thousand chemicals left to test in roasted coffee. This does not mean that coffee is dangerous but rather that animal cancer tests and worst-case risk assessment, build in enormous safety factors and should not be considered true risks.The reason humans can eat the tremendous variety of natural chemical "rodent carcinogens" is that humans, like other animals, are extremely well protected by many general defense enzymes, most of which are inducible (i.e., whenever a defense enzyme is in use, more of it is made). Since the defense enzymes are equally effective against natural and synthetic chemicals one does not expect, nor does one find, a general difference between synthetic and natural chemicals in ability to cause cancer in high-dose rodent tests.The idea that there is an epidemic of human cancer caused by synthetic industrial chemicals is false. In addition, there is a steady rise in life expectancy in the developed countries. Linear extrapolation from the maximum tolerated dose in rodents to low level exposure in humans has led to grossly exaggerated mortality forecasts.Such extrapolations can not be verified by epidemiology. Furthermore, relying on such extrapolations for synthetic chemicals while ignoring the enormous natural background, leads to an imbalanced perception of hazard and allocation of resources. It is the progress of scientific research and technology that will continue to lengthen human life expectancy.Zero exposure to rodent carcinogens cannot be achieved. Low levels of rodent carcinogens of natural origin are ubiquitous in the environment. It is thus impossible to obtain conditions totally free of exposure to rodent carcinogens or to background radiation. Major advances in analytical techniques enable the detection of extremely low concentrations of all substances, whether natural or synthetic, often thousands of times lower than could be detected 30 years ago.Risks compete with risks: society must distinguish between significant and trivial risks. Regulating trivial risks or exposure to substances erroneously inferred to cause cancer at low-doses, can harm health by diverting resources from programs that could be effective in protecting the health of the public. Moreover, wealth creates health: poor people have shorter life expectancy than wealthy people. When money and resources are wasted on trivial problems, society's wealth and hence health is harmed.  相似文献   

14.
2 rat cell lines originated from ascites hepatoma AH66-B and esophageal tumor R1 were examined for their inducibility of sister-chromatid exchanges (SCEs) after treatment with 14 kinds of indirect mutagens/carcinogens, including 6 amine derivatives, 4 azo compounds, 3 aromatic hydrocarbons and 1 steroid. Of the 14 chemicals tested, 2-acetylaminofluorene (AAF), butylbutanolnitrosamine (BBN), dimethylnitrosamine (DMN), cyclophosphamide (CP), urethane, 2-methyl-4-dimethylaminoazobenzene (2-MeDAB), 3′-methyl-4-dimethylaminoazobenzene (3′-MeDAB), 4-o-tolylazo-o-toluidine (4-TT), benzo[a]pyrene (BP), 7,12-dimethyl-benz[a]anthracene (DMBA) and diethylstilbestrol (DES) were estimated to be effective inducers of SCEs in AH66-B and/or R1 cells, without the use of exogenous activating systems. Cell-mediated SCE tests with 6 selected chemicals, CP, 2-MeDAB, 4-TT, BP, DMBA and DES, showed a significant increase of SCEs in Chinese hamster Don-6 cells co-cultivated with AH66-B or R1 cells, depending on the number and sensitivity of AH66-B or R1 cells, as well as on the dose of chemicals tested, whereas singly cultured Don-6 cells were much less sensitive or almost insensitive to these chemicals. The above findings suggest that AH66-B and R1 cells may retain metabolic activities to convert a wide range of indirect mutagens/carcinogens into their active forms to induce SCEs, and that these cell lines provide simple and reliable screening systems in vitro, including the cell-mediated SCE assay, for detection of genotoxic agents, without the use of exogenous activation systems.  相似文献   

15.
Entering a new millennium seems a good time to challenge some old ideas, which in our view are implausible, have little supportive evidence, and might best be left behind. In this essay, we summarize a decade of work, raising four issues that involve toxicology, nutrition, public health, and government regulatory policy. (a) Paracelsus or parascience: the dose (trace) makes the poison. Half of all chemicals, whether natural or synthetic, are positive in high-dose rodent cancer tests. These results are unlikely to be relevant at the low doses of human exposure. (b) Even Rachel Carson was made of chemicals: natural vs. synthetic chemicals. Human exposure to naturally occurring rodent carcinogens is ubiquitous, and dwarfs the general public's exposure to synthetic rodent carcinogens. (c) Errors of omission: micronutrient inadequacy is genotoxic. The major causes of cancer (other than smoking) do not involve exogenous carcinogenic chemicals: dietary imbalances, hormonal factors, infection and inflammation, and genetic factors. Insufficiency of many micronutrients, which appears to mimic radiation, is a preventable source of DNA damage. (d) Damage by distraction: regulating low hypothetical risks. Putting huge amounts of money into minuscule hypothetical risks damages public health by diverting resources and distracting the public from major risks.  相似文献   

16.
The two potent rodent bladder carcinogens o-anisidine and p-cresidine, and the structurally related non-carcinogen 2,4-dimethoxyaniline, have been extensively evaluated for genotoxicity to rodents and found to be inactive. Most data were generated on o-anisidine, an agent that is also only marginally genotoxic in vitro. The two carcinogens induced methaemoglobinaemia in rodents indicating that the chemicals are absorbed and metabolically oxidized. Despite their total lack of genotoxicity in vivo, the two carcinogens have the hall-marks of being genotoxic carcinogens given that most test animals of both sexes of B6C3F1 mice and F344 rats are reported to have succumbed rapidly to malignant bladder cancer. No reasons for this dramatic conflict of test data are so far apparent. The experiments described involve, in one or other combination, 2 strains of mice (including B6C3F1) and 4 strains of rat (including F344), the use of oral and i.p routes of exposure and observations made after 1, 3 or 6 doses of test chemical. 6 tissues (including the rat bladder) were assayed using 3 genetic endpoints (unscheduled DNA synthesis, DNA single-strand breaks and micronuclei induction). Aroclor-induced rats were employed in one set of experiments with o-anisidine. In the case of one set of mouse bone-marrow micronucleus experiments the same batch of the 3 chemicals as used in the cancer bioassays, and the same strain of mouse, were used. Possible further experiments and the implications of these findings are discussed.  相似文献   

17.
There has been a current resurgence of interest in the use of cell transformation for predicting carcinogenicity, which is based mainly on rodent carcinogenicity data. In view of this renewed interest, this paper critically reviews the published literature concerning the ability of the available assays to detect IARC Group 1 agents (known human carcinogens) and Group 2A agents (probable human carcinogens). The predictivity of the available assays for human and rodent non-genotoxic carcinogens (NGCs), in comparison with standard and supplementary in vitro and in vivo genotoxicity tests, is also discussed. The principal finding is that a surprising number of human carcinogens have not been tested for cell transformation across the three main assays (SHE, Balb/c 3T3 and C3H10T1/2), confounding comparative assessment of these methods for detecting human carcinogens. This issue is not being addressed in the ongoing validation studies for the first two of these assays, despite the lack of any serious logistical issues associated with the use of most of these chemicals. In addition, there seem to be no plans for using exogenous bio-transformation systems for the metabolic activation of pro-carcinogens, as recommended in an ECVAM workshop held in 1999. To address these important issues, it is strongly recommended that consideration be given to the inclusion of more human carcinogens and an exogenous source of xenobiotic metabolism, such as an S9 fraction, in ongoing and future validation studies. While cell transformation systems detect a high level of NGCs, it is considered premature to rely only on this endpoint for screening for such chemicals, as recently suggested. This is particularly important, in view of the fact that there is still doubt as to the relevance of morphological transformation to tumorigenesis in vivo, and the wide diversity of potential mechanisms by which NGCs are known to act. Recent progress with regard to increasing the objectivity of scoring the transformed phenotype, and prospects for developing human cell-based transformation assays, are reviewed.  相似文献   

18.
An approach to follow distribution of injected DNA-acting chemicals (mutagens/carcinogens) in animal tissues has been described. This is based on the use of respiratory adaptation (mitochondrial biogenesis) process in Saccharomyces cerevisiae during transition from anaerobic to aerobic state. By virtue of specific interaction of such chemicals with mitochondrial DNA associated with promitochondrial structures this process is extremely sensitive to DNA-acting chemicals. Solutions of berylium sulphate, aflatoxin G1, aflatoxin B1, and carbaryl (all known DNA-acting agents) were injected to rats at low concentrations and, after 24 hr, distribution of these chemicals or their metabolites was studied by determining the inhibitory action of appropriately diluted urine and tissue homogenates on respiratory adaptation in S.cerevisiae. Detectable amounts of the chemicals and their DNA-acting metabolites could be analyzed in urine, liver, lungs, kidney and spleen.  相似文献   

19.
The National Toxicology Program (NTP) was established in 1978 with the broad goal of strengthening the science base of chemical toxicity, thus providing better information to regulatory and research agencies. Since that time the NTP has conducted in-depth toxicity/carcinogenesis studies on over 200 chemicals of importance to industry, the public at large and the general environment; clearly the largest such database in the world. This database is unique in that it represents an objective fairly standard accumulation of peer-reviewed information on a myriad of chemicals composed of various chemical classes, non-carcinogens as well as carcinogens. The results of these studies are reported as "no evidence, equivocal evidence, some evidence or clear evidence of carcinogenic activity" in a single sex/species. There is also an "inadequate" category for studies that have major limitations. Although noted, no attempt is made to give added weight to chemicals which cause neoplasms at multiple sites, at rare versus common sites, in both species/sexes, which occur early in the study, at low as well as high doses, or those observed in the presence or absence of toxicity (necrosis, degeneration, etc.) in the same organ. Such observational data may serve as "markers" or "alerts" for whether a chemical's in vivo carcinogenic activity is the result of mutagenic or non-mutagenic activity.  相似文献   

20.
G R Mohn 《Mutation research》1981,87(2):191-210
During the past 30 years, bacterial test systems have been extensively refined in their ability to detect not only mutagenic agents but, in many cases, carcinogenic ones as well. Since many carcinogens are known to be activated within the mammalian body, major improvements in bacterial test systems were made when representative parts of mammalian metabolism were included as part of the test protocol. Presently, systems of great simplicity and convenience are available for the efficient detection of gene mutations, lysogenic induction of prophages, and differential DNA repair. These qualities render bacterial systems potentially useful in distinguishing between carcinogens and non-carcinogens, in characterizing induced mutation spectra, and possibly in quantifying mutagenic potency that may be used to predict tumor-initiating potency. Sensitive strains of Salmonella typhimurium. Escherichia coli and Bacillus subtilis with altered DNA-repair capacities have been constructed which accurately identify many carcinogens. Comparative studies have shown that techniques using these strains can be standardized to some extent and that the majority of carcinogens are active in all adequately sensitive genetic systems. Because of this redundancy, it may be sufficient to employ only one standardized set of tester strains and methodology. However, serveral classes of known carcinogens are undetected or underestimated when assayed in standard testing procedures. Some of these chemicals can be efficiently recognized as mutagens upon varying the methodology, the genetic endpoint, or the mammalian activation system. Thus, to modify and adjust the experimental protocol to the particular type of chemical under study and to calibrate the system with appropriate carcinogenic and non-carcinogenic reference compounds is advisable. It is noteworthy that chemical carcinogens which probably act by non-genotoxic mechanisms thus far remain undetected in bacterial tests. Newly developed systems which measure specific types of genetic events, such as transpositions of DNA segments and derepression of genes, presently are being tested for their ability to detect such carcinogens. A final matter of growing concern is the increasing number of environmental chemicals that are found to be mutagenic in bacteria but for which information about carcinogenic activity in vivo is insufficient. The possible use of bacteria for quantifying mutagenic potency and extrapolating this information to tumor-initiating potency can be envisaged in three ways: (i) direct extrapolation from standard in vitro tests, (ii) indirect extrapolation making use of an in vitro/in vivo comparison of induced effects (the parallelogram method) as devised by Sobels [138] on the basis of identical dose (to DNA), and (iii) host-mediated assays to assess mutagenic potency of carcinogens in selected organs of mammals...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号