首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peroxisome biogenesis and the role of protein import   总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

2.
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.  相似文献   

3.
Most soluble proteins targeted to the peroxisomal matrix contain a C‐terminal peroxisome targeting signal type 1 (PTS1) or an N‐terminal PTS2 that is recognized by the receptors Pex5p and Pex7p, respectively. These receptors cycle between the cytosol and peroxisome and back again for multiple rounds of cargo delivery to the peroxisome. A small number of peroxisomal matrix proteins, including all six isozymes of peroxisomal fatty acyl‐CoA oxidase (Aox) of the yeast Yarrowia lipolytica, contain neither a PTS1 nor a PTS2. Pex20p has been shown to function as a co‐receptor for Pex7p in the import of PTS2 cargo into peroxisomes. Here we show that cells of Y. lipolytica deleted for the PEX20 gene fail to import not only the PTS2‐containing protein 3‐ketoacyl‐CoA thiolase (Pot1p) but also the non‐PTS1/non‐PTS2 Aox isozymes. Pex20p binds directly to Aox isozymes Aox3p and Aox5p, which requires the C‐terminal Wxxx(F/Y) motif of Pex20p. A W411G mutation in the C‐terminal Wxxx(F/Y) motif causes Aox isozymes to be mislocalized to the cytosol. Pex20p interacts physically with members of the peroxisomal import docking complex, Pex13p and Pex14p. Our results are consistent with a role for Pex20p as the receptor for import of the non‐PTS1/non‐PTS2 Aox isozymes into peroxisomes.  相似文献   

4.
The use of small molecules has great power to dissect biological processes. This study presents the identification and characterisation of an inhibitor of peroxisome matrix protein import. A mini-screen was carried out to identify molecules that cause alteration in peroxisome morphology, or mislocalization of a peroxisome targeted fluorescent reporter protein. A benzimidazole lead compound (LDS-003655) was identified that resulted in reduced GFP fluorescence in peroxisomes and cytosolic GFP accumulation. The effect of the compound was specific to peroxisomes as Golgi bodies, endoplasmic reticulum and the actin cytoskeleton were unaffected even at 25 μM, whereas peroxisome import via the PTS1 pathway was compromised at 100 nM. When seedlings were grown on 25 μM LDS-003655 they displayed morphology typical of seedlings grown in the presence of auxin, and expression of the auxin reporter DR5::GFP was induced. Analysis of a focussed library of LDS-003655 derivatives in comparison with known auxins led to the conclusion that the auxin-like activity of LDS-003655 is attributable to its in situ hydrolysis giving rise to 2,5-dichlorobenzoic acid, whereas the import inhibiting activity of LDS-003655 requires the whole molecule. None of the auxins tested had any effect on peroxisome protein import. Matrix import by the PTS2 import pathway was relatively insensitive to LDS-003655 and its active analogues, with effects only seen after prolonged incubation on high concentrations. Steady-state protein levels of PEX5, the PTS1 import pathway receptor, were reduced in the presence of 100 nM LDS-003655, suggesting a possible mechanism for the import inhibition.  相似文献   

5.
《Molecular cell》2022,82(17):3209-3225.e7
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

6.
How peroxisomes arise   总被引:4,自引:1,他引:3  
Peroxisomes are formed by the synthesis and assembly of membrane proteins and lipids, the selective import of proteins from the cytosol, and the growth and division of resultant organelles. To date, 23 proteins, called peroxins, are known to participate in these processes. This review summarizes recent progress in peroxin characterization and examines the underlying molecular mechanisms of peroxisome biosynthesis.  相似文献   

7.
Sterol carrier protein 2 (SCP2) is a 13-kDa peroxisomal protein, identical to nonspecific lipidtransfer protein, and stimulates various steps of cholesterol metabolism in vitro. Although the name is reminiscent of acyl carrier protein, which is involved in fatty acid synthesis, SCP2 does not bind to lipids specifically or stoichiometrically. This protein is expressed either as a small precursor or as a large fusion (termed SCPx) that carries at its C-terminal the complete sequence of SCP2. SCPx exhibits 3-oxoacyl-CoA thiolase activity, as well as sterol-carrier and lipid-transfer activities. The N- and C-terminal parts of SCPx are similar to the nematode protein P-44 and the yeast protein PXP-18, respectively. P-44, which has no SCP2 sequence, thiolytically cleaved the side chain of bile acid intermediate at a rate comparable to that of SCPx. This, together with the properties of other fusions with SCP2-like sequence, suggests that the SCP2 part of SCPx does not play a direct role in thiolase reaction. PXP-18, located predominantly inside peroxisomes, is similar to SCP2 in primary structure and lipid-transfer activity, and protects peroxisomal acyl-CoA oxidase from thermal denaturation. PXP-18 dimerized at a high temperature, formed an equimolar complex with the oxidase subunit, and released the active enzyme from the complex when the temperature went down. This article attempts to gain insight into the role of SPC2, and to present a model in which PXP-18, a member of the SCP2 family, functions as a molecular chaperone in peroxisomes.  相似文献   

8.
Peroxisomes are a family of organelles which have many unusual features. They can arise de novo from the endoplasmic reticulum by a still poorly characterized process, yet possess a unique machinery for the import of their matrix proteins. As peroxisomes lack DNA, their function, which is highly variable and dependent on developmental and/or environmental conditions, is determined by the post‐translational import of specific metabolic enzymes in folded or oligomeric states. The two classes of matrix targeting signals for peroxisomal proteins [PTS1 (peroxisomal targeting signal 1) and PTS2] are recognized by cytosolic receptors [PEX5 (peroxin 5) and PEX7 respectively] which escort their cargo proteins to, or possibly across, the peroxisome membrane. Although the membrane translocation mechanism remains unclear, it appears to be driven by thermodynamically favourable binding interactions. Recycling of the receptors from the peroxisome membrane requires ATP hydrolysis for two linked processes: ubiquitination of PEX5 (and the PEX7 co‐receptors in yeast) and the function of two peroxisome‐associated AAA (ATPase associated with various cellular activities) ATPases, which play a role in recycling or turnover of the ubiquitinated receptors. This review summarizes and integrates recent findings on peroxisome matrix protein import from yeast, plant and mammalian model systems, and discusses some of the gaps in our understanding of this remarkable protein transport system.  相似文献   

9.
10.
Peroxisomes are capable of importing folded and oligomeric proteins. However, it is a matter of dispute whether oligomer import by peroxisomes is the exception or the rule. Here, I argue for a clear distinction between homo-oligomeric proteins that are essentially peroxisomal, and dually localized hetero-oligomers that access the peroxisome by piggyback import, localizing there in limited number, whereas the majority remain in the cytosol. Homo-oligomeric proteins comprise the majority of all peroxisomal matrix proteins. There is evidence that binding by Pex5 in the cytosol can regulate their oligomerization state before import. The hetero-oligomer group is made up of superoxide dismutase and lactate dehydrogenase. These proteins have evolved mechanisms that render import inefficient and retain the majority of proteins in the cytosol.  相似文献   

11.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

12.
We searched for Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1-40)-fused enhanced green fluorescent protein (EGFP). From mutagenized wild-type CHO-K1 cells stably expressing rat Pex2p and Pex3p(1-40)-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of peroxisomal proteins, including EGFP chimera, catalase, and matrix proteins with PTS types 1 and 2. One clone, ZPEG309, showed a distinct phenotype: import defect of catalase, but normal transport of PTS1 and PTS2 proteins at 37 degrees C. PTS1 and PTS2 import was abrogated when ZPEG309 was cultured at 39 degrees C. Genetic defect of ZPEG309 was a nonsense point mutation in a codon for Arg50 in CHO PEX2 and a mutation resulting in a C-terminal truncation of the introduced rat Pex2p. Therefore, ZPEG309 is a novel pex2, catalase-deficient mutant with temperature-sensitive PTS1 and PTS2 import.  相似文献   

13.
Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling   总被引:1,自引:0,他引:1  
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.  相似文献   

14.
In the past decade, much progress has been made in understanding the mechanisms that govern sorting of proteins to the peroxisomal lumen. This article summarizes the principal features of how peroxisomal matrix enzymes are thought to reach the peroxisome. In addition, it describes recent data that indicate that, in specific pex mutants of the methylotrophic yeast Hansenula polymorpha, defects in matrix protein import can be (partly) rescued by overproduction of the receptor essential for import of these proteins. The implication of these results on the mechanisms of matrix protein import is discussed.  相似文献   

15.
We earlier isolated peroxisome biogenesis-defective Chinese hamster ovary (CHO) cell mutants, ZPEG241, by the 9-(1'-pyrene)nonanol/ultraviolet selection method, from TKaEG2, the wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal type 2 (PTS2)-tagged enhanced green fluorescent protein (EGFP). Peroxisomal localization of PTS2-EGFP was specifically impaired in ZPEG241 due to the failure of Pex5pL expression. Analysis of partial genomic sequence of PEX5 revealed one-point nucleotide-mutation from G to A in the 3'-acceptor splice site located at 1 nt upstream of exon 7 encoding Pex5pL specific 37-amino acid insertion, thereby generating 21-nt deleted mRNA of PEX5L in ZPEG241. When ZPEG241-derived Pex5pL was ectopically expressed in ZPEG241, PTS2 import was not restored because of no interaction with Pex7p. Together, we confirm the pivotal role of Pex5pL in PTS2 import, showing that the N-terminal 7-amino acid residues in the 37-amino acid insertion of Pex5pL are essential for the binding to Pex7p.  相似文献   

16.
Most mitochondrial preproteins are maintained in a loosely folded import-competent conformation by cytosolic chaperones, and are imported into mitochondria by translocator complexes containing a preprotein receptor, termed translocase of the outer membrane of mitochondria (Tom) 20. Using two-hybrid screening, we identified arylhydrocarbon receptor-interacting protein (AIP), an FK506-binding protein homologue, interacting with Tom20. The extreme COOH-terminal acidic segment of Tom20 was required for interaction with tetratricopeptide repeats of AIP. An in vitro import assay indicated that AIP prevents preornithine transcarbamylase from the loss of import competency. In cultured cells, overexpression of AIP enhanced preornithine transcarbamylase import, and depletion of AIP by RNA interference impaired the import. An in vitro binding assay revealed that AIP specifically binds to mitochondrial preproteins. Formation of a ternary complex of Tom20, AIP, and preprotein was observed. Hsc70 was also found to bind to AIP. An aggregation suppression assay indicated that AIP has a chaperone-like activity to prevent substrate proteins from aggregation. These results suggest that AIP functions as a cytosolic factor that mediates preprotein import into mitochondria.  相似文献   

17.
Recruiting matrix proteins with a peroxisomal targeting signal type 2 (PTS2) to the peroxisomal membrane requires species-specific factors. In Saccharomyces cerevisiae, the PTS2 receptor Pex7p acts in concert with the redundant Pex18p/Pex21p, whereas in Yarrowia lipolytica, Pex20p might unite the function of both S. cerevisiae peroxins. Herein, the genome of the filamentous fungus Neurospora crassa was analyzed for peroxin-encoding genes. We identified a set of 18 peroxins that resembles that of Y. lipolytica rather than that of S. cerevisiae. Interestingly, proteins homologous to both S. cerevisiae Pex7p and Y. lipolytica Pex20p exist in N. crassa. We report on the isolation of these PTS2-specific peroxins and demonstrate that NcPex20p can substitute for S. cerevisiae Pex18p/Pex21p, but not for ScPex7p. Like Pex18p, NcPex20p did not bind PTS2 protein or the docking proteins in the absence of ScPex7p. Rather, NcPex20p was required before docking to form an import-competent complex of cargo-loaded PTS2 receptors. NcPex7p did not functionally replace yeast Pex7p, probably because the N. crassa PTS2 receptor failed to associate with Pex18p/Pex21p. However, once NcPex7p and NcPex20p had been coexpressed, it proved possible to replace yeast Pex7p. Pex20p and Pex18p/Pex21p are therefore true orthologues, both of which are in need of Pex7p for PTS2 protein import.  相似文献   

18.
19.
20.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号