首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
Assembly of cytosolic factors p67(phox) and p47(phox) with cytochrome b(558) is one of the crucial keys for NADPH oxidase activation. Certain sequences of Nox2 appear to be involved in cytosolic factor interaction. The role of the D-loop (191)TSSTKTIRRS(200) and the C-terminal (484)DESQANHFAVHHDEEKD(500) of Nox2 on oxidase activity and assembly was investigated. Charged amino acids were mutated to neutral or reverse charge by directed mutagenesis to generate 21 mutants. Recombinant wild-type or mutant Nox2 were expressed in the X-CGD PLB-985 cell model. K195A/E, R198E, R199E, and RR198199QQ/AA mutations in the D-loop of Nox2 totally abolished oxidase activity. However, these D-loop mutants demonstrated normal p47(phox) translocation and iodonitrotetrazolium (INT) reductase activity, suggesting that charged amino acids of this region are essential for electron transfer from FAD to oxygen. Replacement of Nox2 D-loop with its homolog of Nox1, Nox3, or Nox4 was fully functional. In addition, fMLP (formylmethionylleucylphenylalanine)-activated R199Q-Nox2 and D-loop(Nox4)-Nox2 mutants exhibited four to eight times the NADPH oxidase activity of control cells, suggesting that these mutations lead to a more efficient oxidase activation process. In contrast, the D484T and D500A/R/G mutants of the alpha-helical loop of Nox2 exhibited no NADPH oxidase and INT reductase activities associated with a defective p47(phox) membrane translocation. This suggests that the alpha-helical loop of the C-terminal of Nox2 is probably involved in the correct assembly of the NADPH oxidase complex occurring during activation, permitting cytosolic factor translocation and electron transfer from NADPH to FAD.  相似文献   

2.
The X+-linked chronic granulomatous disease (X+-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X+-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X+-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.  相似文献   

3.
Role of the small GTPase Rac in p22phox-dependent NADPH oxidases   总被引:2,自引:0,他引:2  
Miyano K  Sumimoto H 《Biochimie》2007,89(9):1133-1144
The superoxide-producing phagocyte NADPH oxidase gp91(phox)/Nox2 and the non-phagocytic oxidases Nox1 and Nox3 each form a complex in the membrane with p22(phox), which provides both stabilization and a docking site for organizer proteins. The p22(phox)-complexed Nox2 and Nox1 are dormant on their own, and their activation requires soluble supportive proteins such as a Nox organizer (p47(phox) or Noxo1) and a Nox activator (p67(phox) or Noxa1). The small GTPase Rac directly binds to the activators, and thus plays an essential role in the Nox2-based oxidase containing p47(phox) and p67(phox) or a positive role in Nox1 activity supported by Noxo1 and Noxa1. Although Nox3 complexed with p22(phox) constitutively produce superoxide, the production can be enhanced by supportive proteins. Here we compare the roles of Rac in these p22(phox)-dependent oxidases using the organizer and activator in different combinations. Expression of constitutively active Rac1(Q61L) is essential for activation of the Nox2- or Nox1-based oxidase containing the organizer p47(phox) and either p67(phox) or Noxa1. When these oxidases use Noxo1 as an organizer instead of p47(phox), they produce a small but significant amount of superoxide without expression of Rac1(Q61L), although the production is enhanced by Rac1(Q61L). Thus p47(phox) is likely related to strict dependence on Rac. The Nox3-based oxidase has a similar tendency in the change of the dependence: Rac plays a positive role in Nox3 activation in the presence of p47(phox) and either p67(phox) or Noxa1, whereas Rac fails to upregulate Nox3 activity when p47(phox) is replaced with Noxo1. We also demonstrate that, in the Nox3-based oxidase containing solely p67(phox) as supportive protein, expression of Rac1(Q61L) enhances not only superoxide production but also membrane translocation of p67(phox). Since the enhancements are not observed with a mutant p67(phox) defective in binding to Rac, this GTPase appear to directly recruit p67(phox) to the membrane.  相似文献   

4.
A series of truncated forms of gp91phox were expressed in Escherichia coli in which the N-terminal hydrophobic transmembrane region was replaced with a portion of the highly soluble bacterial protein thioredoxin. TRX-gp91phox (306-569), which contains the putative FAD and NADPH binding sites, showed weak NADPH-dependent NBT (nitroblue tetrazolium) reductase activity, whereas TRX-gp91phox (304-423) and TRX-gp91phox (424-569) were inactive. Activity saturated at about a 1:1 molar ratio of FAD to TRX-gp91phox (306-569), and showed the same K(m) for NADPH as that for superoxide generating activity by the intact enzyme. Activity was not inhibited by superoxide dismutase, indicating that it was not mediated by superoxide, but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium. In the presence of Rac1, the cytosolic regulatory protein p67phox stimulated the NBT reductase activity, but p47phox had no effect. Truncated p67phox containing the activation domain (residues 199-210) [C.-H. Han, J.R. Freeman, T. Lee, S.A. Motalebi, and J.D. Lambeth (1998) J. Biol. Chem. 273, 16663-16668] stimulated activity approximately 2-fold, whereas forms mutated or lacking this region failed to stimulate the activity. Our data indicate that: (i) TRX-gp91phox (306-569) contains binding sites for both pyridine and flavin nucleotides; (ii) this flavoprotein domain shows weak diaphorase activity; and (iii) the flavin-binding domain of gp91phox is the target of regulation by the activation domain of p67phox.  相似文献   

5.
The superoxide-producing phagocyte NADPH oxidase can be reconstituted in a cell-free system. The activity of NADPH oxidase is dependent on FAD, but the physiological status of FAD in the oxidase is not fully elucidated. To clarify the role of FAD in NADPH oxidase, FAD-free full-length recombinant p47(phox), p67(phox), p40(phox), and Rac were prepared, and the activity was reconstituted with these proteins and purified cytochrome b(558) (cyt b(558)) with different amounts of FAD. A remarkably high activity, over 100 micromol/s/micromol heme, was obtained in the oxidase with purified cyt b(558), ternary complex (p47-p67-p40(phox)), and Rac. From titration with FAD of the activity of NADPH oxidase reconstituted with purified FAD-devoid cyt b, the dissociation constant K(d) of FAD in cyt b(558) of reconstituted oxidase was estimated as nearly 1 nm. We also examined addition of FAD on the assembly process in reconstituted oxidase. The activity was remarkably enhanced when FAD was present during assembly process, and the efficacy of incorporating FAD into the vacant FAD site in purified cyt b(558) increased, compared when FAD was added after assembly processes. The absorption spectra of reconstituted oxidase under anaerobiosis showed that incorporation of FAD into cyt b(558) recovered electron flow from NADPH to heme. From both K(d) values of FAD and the amount of incorporated FAD in cyt b(558) of reconstituted oxidase, in combination with spectra, we propose the model in which the K(d) values of FAD in cyt b(558) is changeable after activation and FAD binding works as a switch to regulate electron transfer in NADPH oxidase.  相似文献   

6.
Site-directed mutagenesis was used to generate a series of mutants harboring point or multiple substitutions within the hydrophilic, polybasic domain of gp91(phox) encompassed by residues 86-102, which was previously identified as a site of interaction with p47(phox) during phagocyte NADPH oxidase assembly. Recombinant wild-type or mutant gp91(phox) was expressed in a human myeloid leukemia cell line in which the endogenous gp91(phox) gene was disrupted by gene targeting. NADPH oxidase activity was measured in a cytochrome c reduction assay following granulocytic differentiation of cells that expressed recombinant gp91(phox). Expression of a gp91(phox) mutant in which amino acids 89-97 were replaced with nine alternate amino acids abolished NADPH oxidase activity. Expression of gp91(phox) mutants R89T, D95A, D95R, R96A, R96E, or K102T did not significantly affect NADPH oxidase activity. However, mutations of individual or paired arginine residues at positions 91 and 92 had substantial effects on superoxide generation. The R91E/R92E mutation completely abolished both NADPH oxidase activity and membrane-translocation of the cytosolic oxidase proteins p47(phox), p67(phox), Rac1, and Rac2. The phorbol 12-myristate 13-acetate-induced rate of superoxide production was reduced by approximately 75% in cells expressing R91T/R92A, R91E, or R92E gp91(phox) along with an increased lag time to the maximal rates of superoxide production relative to cells expressing wild-type gp91(phox). Taken together, these results demonstrate that Arg91 and Arg92 of gp91(phox) are essential for flavocytochrome b558 function in granulocytes and suggest that these residues participate in the interaction of gp91(phox) with the cytosolic oxidase proteins.  相似文献   

7.
In the O2- generating flavocytochrome b, the membrane-bound component of the neutrophil NADPH oxidase, electrons are transported from NADPH to O2 in the following sequence: NADPH --> FAD --> heme b -->O2. Although p-iodonitrotetrazolium (INT) has frequently been used as a probe of the diaphorase activity of the neutrophil flavocytochrome b, the propensity of its radical to interact reversibly with O2 led us to question its specificity. This study was undertaken to reexamine the interaction of INT with the redox components of the neutrophil flavocytochrome b. Two series of inhibitors were used, namely the flavin analog 5-deaza FAD and the heme inhibitors bipyridyl and benzylimidazole. The following results indicate that INT reacts preferentially with the hemes rather than with the FAD redox center of flavocytochrome b and is not therefore a specific probe of the diaphorase activity of flavocytochrome b. First, in anaerobiosis, reduced heme b in activated membranes was reoxidized by INT as efficiently as by O2 even in the presence of concentrations of 5-deaza FAD which fully inhibited the NADPH oxidase activity. Second, the titration curve of dithionite-reduced heme b in neutrophil membranes obtained by oxidation with increasing amounts of INT was strictly superimposable on that of dithionite-reduced hemin. Third, INT competitively inhibited the O2 uptake by the activated NADPH oxidase in a cell-free system. Finally, the heme inhibitor bipyridyl competitively inhibited the reduction of INT in anaerobiosis, and the oxygen uptake in aerobiosis.  相似文献   

8.
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.  相似文献   

9.
Noxa1 was discovered as an activating factor for Nox1, an O(2)(-)-generating enzyme. Subsequent studies have shown that Noxa1 is colocalized with Nox2 in several cell types, including vascular cells. Nox2 activation by Noxa1 has been examined in reconstituted model cells. However, little is known about the kinetic properties of Noxa1 in Nox2 activation. In the present study, we used purified cyt.b(558) (Nox2 plus p22(phox)), Rac(Q61L), and Noxo1 to examine the ability of Noxa1 to activate Nox2. In the pure reconstitution system, Noxa1 activated Nox2 with lower efficiency than p67(phox), a canonical activator of Nox2. The EC(50) value of Noxa1 was considerably higher than that of p67(phox). The V(max) value with Noxa1 and Noxo1 was one-third of that with p67(phox) and p47(phox). The EC(50) value of Noxo1 or Rac(Q61L) was also higher when Noxa1 was used. The affinity of FAD for the oxidase and the stability of the active complex were remarkably low when Noxa1 and Noxo1 were used compared with p67(phox) and p47(phox). The stability was not improved by fusion of Noxa1 with Rac(Q61L). These findings show that Noxa1 has quite different kinetic properties from p67(phox) and suggest that Noxa1 may function as a moderate activator of Nox2.  相似文献   

10.
Increased oxidative stress plays a role in the pathogenesis of beta-cell dysfunction and death. We studied isoforms of NADPH oxidase components in islets of Langerhans isolated from rat pancreas and tumoral rat beta-cell line RINm5F cells by RT-PCR and sequencing of its products. RT-PCR revealed that isolated islets constitutively expressed mRNA of NADPH oxidase components, Nox1, Nox2, Nox4 and p22(phox) as membrane-associated components and p47(phox), Noxo1 (homologue of p47(phox)), Noxa1 (homologue of p67(phox)), and p40(phox) as cytosolic components. RINm5F cells showed a similar pattern of expression but Nox2 mRNA was not detected. Expression of Nox1, Nox4, Noxo1 and Noxa1 was confirmed by sequencing the PCR products. Immunohistochemistry revealed the expression of NADPH oxidase component in beta-cells of rat pancreatic islets. Glucose-stimulated insulin secretion from isolated islets was suppressed by diphenyleneiodonium, a flavocytochrome inhibitor, but not by apocynin, an inhibitor of p47(phox) translocation to membranes. Our results suggest that the functional significance of NADPH oxidase in insulin secretion may merit further investigation.  相似文献   

11.
Nox3, a member of the superoxide-producing NADPH oxidase (Nox) family, participates in otoconia formation in mouse inner ears, which is required for perception of balance and gravity. The activity of other Nox enzymes such as gp91(phox)/Nox2 and Nox1 is known to absolutely require both an organizer protein (p47(phox) or Noxo1) andanactivatorprotein (p67(phox) or Noxa1); for the p47(phox)-dependent activation of these oxidases, treatment of cells with stimulants such as phorbol 12-myristate 13-acetate is also indispensable. Here we show that ectopic expression of Nox3 in various types of cells leads to phorbol 12-myristate 13-acetate-independent constitutive production of a substantial amount of superoxide under the conditions where gp91(phox) and Nox1 fail to generate superoxide, i.e. in the absence of the oxidase organizers and activators. Nox3 likely forms a functional complex with p22(phox); Nox3 physically interacts with and stabilizes p22(phox), and the Nox3-dependent superoxide production is totally dependent on p22(phox). The organizers p47(phox) and Noxo1 are capable of enhancing the superoxide production by Nox3 in the absence of the activators, and the enhancement requires the interaction of the organizers with p22(phox), further indicating a link between Nox3 and p22(phox). The p47(phox)-enhanced Nox3 activity is further facilitated by p67(phox) or Noxa1, whereas the activators cancel the Noxo1-induced enhancement. On the other hand, the small GTPase Rac, essential for the gp91(phox) activity, is likely dispensable to the Nox3 system. Thus Nox3 functions together with p22(phox) as an enzyme constitutively producing superoxide, which can be distinctly regulated by combinatorial use of the organizers and activators.  相似文献   

12.
All methods used for quantitation of superoxide have limitations when it comes to differentiating between extracellular and intracellular sites of superoxide production. In the present study, we monitored dihydroethidium (DHE)-derived fluorescence at 570 nm, which indicates hydroxyethidium derived from reaction with superoxide produced by human leukemia cells (HL-60) and microvascular endothelial cells (HMEC-1). Phorbol-12-myristate 13-acetate (PMA; 100 ng/ml) caused an increase in fluorescence and lucigenin chemiluminescence in HL-60, which was abolished by superoxide dismutase (SOD; 600 U/ml) indicating that DHE detects extracellular superoxide. Furthermore, both HL-60 cells and HMEC-1 generated a fluorescence signal in the presence of DHE under resting conditions, which was unaffected by SOD, but abolished by polyethylene glycosylated-SOD (PEG-SOD) (100 U/ml) and MnTmPyP (25 μM), indicating that DHE also detects superoxide produced intracellularly. In HMEC-1, silencing of either Nox2 or Nox4 components of NADPH oxidase with small interference RNA (siRNA) resulted in a significant reduction in superoxide detected by both DHE fluorescence (Nox2 siRNA; 71 ± 6% and Nox4 siRNA 83 ± 7% of control) and lucigenin chemiluminescence (Nox2; 54 ± 6% and Nox4 74 ± 4% of control). In conclusion, DHE-derived fluorescence at 570 nm is a convenient method for detection of intracellular and extracellular superoxide produced by phagocytic and vascular NADPH oxidase.  相似文献   

13.
All methods used for quantitation of superoxide have limitations when it comes to differentiating between extracellular and intracellular sites of superoxide production. In the present study, we monitored dihydroethidium (DHE)-derived fluorescence at 570 nm, which indicates hydroxyethidium derived from reaction with superoxide produced by human leukemia cells (HL-60) and microvascular endothelial cells (HMEC-1). Phorbol-12-myristate 13-acetate (PMA; 100 ng/ml) caused an increase in fluorescence and lucigenin chemiluminescence in HL-60, which was abolished by superoxide dismutase (SOD; 600 U/ml) indicating that DHE detects extracellular superoxide. Furthermore, both HL-60 cells and HMEC-1 generated a fluorescence signal in the presence of DHE under resting conditions, which was unaffected by SOD, but abolished by polyethylene glycosylated-SOD (PEG-SOD) (100 U/ml) and MnTmPyP (25 μM), indicating that DHE also detects superoxide produced intracellularly. In HMEC-1, silencing of either Nox2 or Nox4 components of NADPH oxidase with small interference RNA (siRNA) resulted in a significant reduction in superoxide detected by both DHE fluorescence (Nox2 siRNA; 71 ± 6% and Nox4 siRNA 83 ± 7% of control) and lucigenin chemiluminescence (Nox2; 54 ± 6% and Nox4 74 ± 4% of control). In conclusion, DHE-derived fluorescence at 570 nm is a convenient method for detection of intracellular and extracellular superoxide produced by phagocytic and vascular NADPH oxidase.  相似文献   

14.
Reactive oxygen species (ROS) serve several physiological functions; in some settings they act in host defense, while in others they function in cellular signaling or in biosynthetic reactions. We studied the expression and function of a recently described source of ROS, NAD(P)H oxidase 1 or Nox1, which has been associated with cell proliferation. In situ hybridization in mouse colon revealed high Nox1 expression within the lower two-thirds of colon crypts, where epithelial cells undergo proliferation and differentiation. Human multitumor tissue array analysis confirmed colon-specific Nox1 expression, predominantly in differentiated epithelial tumors. Differentiation of Caco2 and HT29 cells with 1alpha,25-dihydroxyvitamin D(3) or IFN-gamma enhances Nox1 expression and decreases cell proliferation, suggesting that Nox1 does not function as a mitogenic oxidase in colon epithelial cells. Transduction with retrovirus encoding Nox1 restored activation and differentiation-dependent superoxide production in gp91(phox)-deficient PLB-985 cells, indicating close functional similarities to the phagocyte oxidase (phox). Furthermore, coexpression of cytosolic components, p47(phox) and p67(phox), augments Nox1 activity in reconstituted K562 cells. Finally, Nox1 partially restores superoxide production in neutrophils differentiating ex vivo from gp91(phox)-deficient CD34(+) peripheral blood-derived stem cells derived from patients with X-linked chronic granulomatous disease. These studies demonstrate a significant functional homology (cofactor-dependent and activation-regulated superoxide production) between Nox1 and its closest homologue, gp91(phox), suggesting that targeted up-regulation of Nox1 expression in phagocytic cells could provide a novel approach in the molecular treatment of chronic granulomatous disease.  相似文献   

15.
To illuminate the origins of NADPH oxidase (Nox), we identified cDNA clones encoding Nox2, Nox4, p22 phagocyte oxidase (phox), p47phox, and p67phox in a chordate phylogenetically distant to the vertebrates, the sea squirt Ciona intestinalis. We also examined the spatiotemporal expression of these genes in embryos and juveniles. The sequences of the Nox2, Nox4, p22phox, p47phox, and p67phox cDNAs contained open reading frames encoding 581, 811, 175, 461, and 515 amino acids, respectively. The level of identities between the deduced Nox2, Nox4, p22phox, p47phox, and p67phox amino acid sequences and their corresponding human components were 54.0, 31.0, 44.4, 36.0, and 26.2%, respectively. Despite these low identities, the functional domains of the C. intestinalis and human NADPH oxidase and Nox4 are highly conserved. The genomic organizations of the components of the NADPH oxidase gene except for p67phox (a single exon gene) and the Nox4 gene in C. intestinalis are highly similar to those of the corresponding human NADPH oxidase genes. Further, the analyzed part of the C. intestinalis genome and EST database do not seem to present p40phox and Nox5. The Nox2, p22phox, p47phox, and p67phox genes were specifically expressed in the blood cells of juveniles. The Nox4 gene was expressed in blood cells and endostyle of juveniles. These results suggest that C. intestinalis NADPH oxidase components possess potential functional activities similar to those of human, but the manner in which cytosolic phox proteins in C. intestinalis interact is different from that in human.  相似文献   

16.
Human normal and transformed (Caco-2) colon tissues as well as guinea pig gastric mucosal cells express Nox1, which is a homolog of the phagocyte NADPH oxidase subunit, gp91(phox) of membrane-bound cytochrome b(558). It was reported that Nox1-transfection to NIH 3T3 cells could provide O(2)(-)-generating ability, independently of regulatory cytosolic factors (Rac2, p67(phox), and p47(phox)) that are obligatory in the phagocyte oxidase system. Here, we detected and sequenced a p67(phox) homolog in Caco-2 almost identical to the neutrophil sequence, except for three nucleotide substitutions, two of which changed lysines 181 and 328 to arginines. Investigation of its ability to support O(2)(-)-generation in cell-free reconstitution experiments combining with neutrophil cytochrome b(558) showed O(2)(-)-generation, provided that recombinant p47(phox) was added. This result demonstrates that the intrinsic p67(phox) homolog of Caco-2 was able to function as a phagocyte p67(phox) for cytochrome b(558). The requirement of p47(phox) addition suggested that this component was absent in Caco-2 cells. Caco-2 membranes, used as a source of Nox1 in place of cytochrome b(558), did not show significant O(2)(-)-generation, which was mainly explained by their very little Nox1 expression.  相似文献   

17.
Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.  相似文献   

18.
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. Patients with CGD suffer from recurrent bacterial and fungal infections because of the absence of superoxide anions (O2- degrees ) generatingsystem. The NADPH oxidase complex is composed of a membranous cytochrome b558, cytosolic proteins p67phox, p47phox, p40phox and two small GTPases Rac2 and Rap1A. Cytochrome b558 consists of two sub-units gp91phox and p22phox. The most common form of CGD is due to mutations in CYBB gene encoding gp91phox. In some rare cases, the mutated gp91phox is normally expressed but is devoided of oxidase activity. These variants called X+ CGD, have provided interesting informations about oxidase activation mechanisms. However modelization of such variants is necessary to obtain enough biological material for studies at the molecular level. A cellular model (knock-out PLB-985 cells) has been developed for expressing recombinant mutated gp91phox for functional analysis of the oxidase complex. Recent works demonstrated that this cell line genetically deficient in gp91phox is a powerful tool for functional analysis of the NADPH oxidase complex activation.  相似文献   

19.
Nox1 and Nox4, homologues of the leukocyte NADPH oxidase subunit Nox2 (gp91phox) mediate superoxide anion formation in various cell types. However, their interactions with other components of the NADPH oxidase are poorly defined. We determined whether a direct interaction of Nox1 and Nox4 with the p22phox subunit of the NADPH oxidase occurs. Using confocal microscopy, co-localization of p22phox with Nox1, Nox2, and Nox4 was observed in transiently transfected vascular smooth muscle cells (VSMC) and HEK293 cells. Plasmids coding for fluorescent fusion proteins of p22phox and the Nox proteins with cyan- and yellow-fluorescent protein (cfp and yfp, respectively) were constructed and expressed in VSMC and HEK293 cells. The cfp-tagged p22phox expression level increased upon cotransfection with Nox1 or Nox4. Protein-protein interaction between the fluorescent fusion proteins of p22phox and the Nox partners was observed using the fluorescence resonance energy transfer technique. Immunoprecipitation of native Nox1 from human VSMC revealed co-precipitation of p22phox. Immunoprecipitation from transfected HEK293 cells revealed co-precipitation of native p22phox with yfp-tagged Nox1, Nox2, and Nox4. Following mutation of a histidine (corresponding to the position 115 in human Nox2) to leucine, this interaction was abolished. Transfection of rat p22phox (but not Noxo1 and Noxa1) increased the radical generation in cells expressing Nox4. We provide evidence that p22phox directly interacts with Nox1 and Nox4, to form an superoxide-generating NADPH oxidase and demonstrate that mutation of the potential heme binding site in the Nox proteins disrupts the complex formation of Nox1 and Nox4 with p22phox.  相似文献   

20.
During activation of the phagocyte (Nox2-based) NADPH oxidase, the cytoplasmic Phox complex (p47(phox)-p67(phox)-p40(phox)) translocates and associates with the membrane-spanning flavocytochrome b(558). It is unclear where (in cytoplasm or on membranes), when (before or after assembly), and how p40(phox) acquires its PI(3)P-binding capabilities. We demonstrated that in addition to conformational changes induced by H(2)O(2) in the cytoplasm, p40(phox) acquires PI(3)P-binding through direct or indirect membrane targeting. We also found that p40(phox) is essential when p47(phox) is partially phosphorylated during FcγR-mediated oxidase activation; however, p40(phox) is less critical when p47(phox) is adequately phosphorylated, using phosphorylation-mimicking mutants in HEK293(Nox2/FcγRIIa) and RAW264.7(p40/p47KD) cells. Moreover, PI binding to p47(phox) is less important when the autoinhibitory PX-PB1 domain interaction in p40(phox) is disrupted or when p40(phox) is targeted to membranes. Furthermore, we suggest that high affinity PI(3)P binding of the p40(phox) PX domain is critical during its accumulation on phagosomes, even when masked by the PB1 domain in the resting state. Thus, in addition to mechanisms for directly acquiring PI(3)P binding in the cytoplasm by H(2)O(2), p40(phox) can acquire PI(3)P binding on targeted membranes in a p47(phox)-dependent manner and functions both as a "carrier" of the cytoplasmic Phox complex to phagosomes and an "adaptor" of oxidase assembly on phagosomes in cooperation with p47(phox), using positive feedback mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号