首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF) and vascular conductance (CVC) in conscious, chronically instrumented dogs during treadmill exercise ranging from mild to severe workloads. Metaboreflex responses were also observed during mild exercise with constant heart rate (HR) of 225 beats/min and beta(1)-adrenergic receptor blockade to attenuate the substantial reflex increases in cardiac work. The muscle metaboreflex was activated via graded partial occlusion of hindlimb blood flow. During mild exercise, with muscle metaboreflex activation, hindlimb ischemia elicited significant reflex increases in mean arterial pressure (MAP), HR, and cardiac output (CO) (+39.0 +/- 5.2 mmHg, +29.9 +/- 7.7 beats/min, and +2.0 +/- 0.4 l/min, respectively; all changes, P < 0.05). CBF increased from 51.9 +/- 4.3 to 88.5 +/- 6.6 ml/min, (P < 0.05), whereas no significant change in CVC occurred (0.56 +/- 0.06 vs. 0.59 +/- 0.05 ml. min(-1). mmHg(-1); P > 0.05). Similar responses were observed during moderate exercise. In contrast, with metaboreflex activation during severe exercise, no further increases in CO or HR occurred, the increases in MAP and CBF were attenuated, and a significant reduction in CVC was observed (1.00 +/- 0.12 vs. 0.90 +/- 0.13 ml. min(-1). mmHg(-1); P < 0.05). Similarly, when the metaboreflex was activated during mild exercise with the rise in cardiac work lessened (via constant HR and beta(1)-blockade), no increase in CO occurred, the MAP and CBF responses were attenuated (+15.6 +/- 4.5 mmHg, +8.3 +/- 2 ml/min), and CVC significantly decreased from 0.63 +/- 0.11 to 0.53 +/- 0.10 ml. min(-1). mmHg(-1). We conclude that the muscle metaboreflex induced increases in sympathetic nerve activity to the heart functionally vasoconstricts the coronary vasculature.  相似文献   

2.
Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O(2) at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seven subjects (6 men/1 woman; 25 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and hyperoxic conditions. Forearm blood flow (FBF; in ml/min) was measured using Doppler ultrasound. Forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from FBF and blood pressure (in mmHg; brachial arterial catheter). Studies were performed in a hyperbaric chamber with the subjects supine at 1 atmospheres absolute (ATA) (sea level) while breathing normoxic gas [21% O(2), 1 ATA; inspired Po(2) (Pi(O(2))) ≈ 150 mmHg] and at 2.82 ATA while breathing hyperbaric normoxic (7.4% O(2), 2.82 ATA, Pi(O(2)) ≈ 150 mmHg) and hyperoxic (100% O(2), 2.82 ATA, Pi(O(2)) ≈ 2,100 mmHg) gas. Resting FBF and FVC were less during hyperbaric hyperoxia compared with hyperbaric normoxia (P < 0.05). The change in FBF and FVC (Δ from rest) during exercise under normoxia (204 ± 29 ml/min and 229 ± 37 ml·min(-1)·100 mmHg(-1), respectively) and hyperbaric normoxia (203 ± 28 ml/min and 217 ± 35 ml·min(-1)·100 mmHg(-1), respectively) did not differ (P = 0.66-0.99). However, the ΔFBF (166 ± 21 ml/min) and ΔFVC (163 ± 23 ml·min(-1)·100 mmHg(-1)) during hyperbaric hyperoxia were substantially attenuated compared with other conditions (P < 0.01). Our data suggest that exercise hyperemia in skeletal muscle is highly dependent on oxygen availability during hyperoxia.  相似文献   

3.
Hypoxic vasodilation in skeletal muscle at rest is known to include β-adrenergic receptor-stimulated nitric oxide (NO) release. We previously reported that the augmented skeletal muscle vasodilation during mild hypoxic forearm exercise includes β-adrenergic mechanisms. However, it is unclear whether a β-adrenergic receptor-stimulated NO component exists during hypoxic exercise. We hypothesized that NO-mediated vasodilation becomes independent of β-adrenergic receptor activation with increased exercise intensity during hypoxic exercise. Ten subjects (7 men, 3 women; 23 ± 1 yr) breathed hypoxic gas to titrate arterial O(2) saturation to 80% while remaining normocapnic. Subjects performed two consecutive bouts of incremental rhythmic forearm exercise (10% and 20% of maximum) with local administration (via a brachial artery catheter) of propranolol (β-adrenergic receptor inhibition) alone and with the combination of propranolol and nitric oxide synthase inhibition [N(G)-monomethyl-l-arginine (l-NMMA)] under normoxic and hypoxic conditions. Forearm blood flow (FBF, ml/min; Doppler ultrasound) and blood pressure [mean arterial pressure (MAP), mmHg; brachial artery catheter] were assessed, and forearm vascular conductance (FVC, ml·min(-1)·100 mmHg(-1)) was calculated (FBF/MAP). During propranolol alone, the rise in FVC (Δ from normoxic baseline) due to hypoxic exercise was 217 ± 29 and 415 ± 41 ml·min(-1)·100 mmHg(-1) (10% and 20% of maximum, respectively). Combined propranolol-l-NMMA infusion during hypoxic exercise attenuated ΔFVC at 20% (352 ± 44 ml·min(-1)·100 mmHg(-1); P < 0.001) but not at 10% (202 ± 28 ml·min(-1)·100 mmHg(-1); P = 0.08) of maximum compared with propranolol alone. These data, when integrated with earlier findings, demonstrate that NO contributes to the compensatory vasodilation during mild and moderate hypoxic exercise; a β-adrenergic receptor-stimulated NO component exists during low-intensity hypoxic exercise. However, the source of the NO becomes less dependent on β-adrenergic mechanisms as exercise intensity increases.  相似文献   

4.
The relative influence of muscle metabo- and baroreflex activity on heat loss responses during post-isometric handgrip (IHG) exercise ischemia remains unknown, particularly under heat stress. Therefore, we examined the separate and integrated influences of metabo- and baroreceptor-mediated reflex activity on sweat rate and cutaneous vascular conductance (CVC) under increasing levels of hyperthermia. Twelve men performed 1 min of IHG exercise at 60% of maximal voluntary contraction followed by 2 min of ischemia with simultaneous application of lower body positive pressure (LBPP, +40 mmHg), lower body negative pressure (LBNP, -20 mmHg), or no pressure (control) under no heat stress. On separate days, trials were repeated under heat stress conditions of 0.6°C (moderate heat stress) and 1.4°C (high heat stress) increase in esophageal temperature. For all conditions, mean arterial pressure was greater with LBPP and lower with LBNP than control during ischemia (all P ≤ 0.05). No differences in sweat rate were observed between pressure conditions, regardless of the level of hyperthermia (P > 0.05). Under moderate heat stress, no differences in CVC were observed between pressure conditions. However, under high heat stress, LBNP significantly reduced CVC by 21 ± 4% (P ≤ 0.05) and LBPP significantly elevated CVC by 14 ± 5% (P ≤ 0.05) relative to control. These results show that sweating during post-IHG exercise ischemia is activated by metaboreflex stimulation, and not by baroreflexes. In contrast, our results suggest that baroreflexes can influence the metaboreflex modulation of CVC, but only at greater levels of hyperthermia.  相似文献   

5.
We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (-3.08 +/- 0.5 vs. -5.14 +/- 0.6 beats.min(-1).mmHg(-1); P < 0.05) and CO-LVSP (-134.74 +/- 24.5 vs. -208.6 +/- 22.2 ml.min(-1).mmHg(-1); P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 +/- 2.8% vs. 52.3 +/- 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.  相似文献   

6.
Buffering capacity of deproteinized human vastus lateralis muscle   总被引:7,自引:0,他引:7  
The in vitro deproteinized vastus lateralis muscle buffer capacity, carnosine, and histidine levels were examined in 20 men from 4 distinct populations (5 sprinters, 800-m runners; 5 rowers; 5 marathoners; 5 untrained). Needle biopsies were obtained at rest from the vastus lateralis muscle. The buffer capacity was determined in deproteinized homogenates by repeatedly titrating supernatant extracts over the pH range of 7.0-6.0 with 0.01 N HCl. Carnosine and histidine levels were determined on an amino acid AutoAnalyzer. Fast-twitch fiber percentage was determined by staining intensity of myosin adenosinetriphosphatase. High-intensity running performance was assessed on an inclined treadmill run to fatigue (20% incline; 3.5 m X s-1). Significantly (P less than 0.01) elevated buffer capacities, carnosine levels, and high-intensity running performances were demonstrated by the sprinters and rowers, but no significant differences existed between these variables for the marathoners vs. untrained subjects. Low but significant (P less than 0.05) interrelationships were demonstrated between buffer capacity, carnosine levels, and fast-twitch fiber composition. These findings indicate that the sprinters and rowers possess elevated buffering capabilities and carnosine levels compared with marathon runners and untrained subjects.  相似文献   

7.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF), coronary vascular conductance (CVC), and regional left ventricular performance in conscious, chronically instrumented dogs during treadmill exercise before and after the induction of heart failure (HF). In control experiments, muscle metaboreflex activation during mild exercise elicited significant reflex increases in mean arterial pressure, heart rate, and cardiac output. CBF increased significantly, whereas no significant change in CVC occurred. There was no significant change in the minimal rate of myocardial shortening (-dl/dt(min)) with muscle metaboreflex activation during mild exercise (15.5 +/- 1.3 to 16.8 +/- 2.4 mm/s, P > 0.05); however, the maximal rate of myocardial relaxation (+dl/dt(max)) increased (from 26.3 +/- 4.0 to 33.7 +/- 5.7 mm/s, P < 0.05). Similar hemodynamic responses were observed with metaboreflex activation during moderate exercise, except there were significant changes in both -dl/dt(min) and dl/dt(max). In contrast, during mild exercise with metaboreflex activation during HF, no significant increase in cardiac output occurred, despite a significant increase in heart rate, inasmuch as a significant decrease in stroke volume occurred as well. The increases in mean arterial pressure and CBF were attenuated, and a significant reduction in CVC was observed (0.74 +/- 0.14 vs. 0.62 +/- 0.12 ml x min(-1) x mmHg(-1); P < 0.05). Similar results were observed during moderate exercise in HF. Muscle metaboreflex activation did not elicit significant changes in either -dl/dt(min) or +dl/dt(max) during mild exercise in HF. We conclude that during HF the elevated muscle metaboreflex-induced increases in sympathetic tone to the heart functionally vasoconstrict the coronary vasculature, which may limit increases in myocardial performance.  相似文献   

8.
Whether the activation of metabolically sensitive skeletal muscle afferents (i.e., muscle metaboreflex) influences cardiac baroreflex responsiveness remains incompletely understood. A potential explanation for contrasting findings of previous reports may be related to differences in the magnitude of muscle metaboreflex activation utilized. Therefore, the present study was designed to investigate the influence of graded intensities of muscle metaboreflex activation on cardiac baroreflex function. In eight healthy subjects (24 +/- 1 yr), the graded isolation of the muscle metaboreflex was achieved by post-exercise ischemia (PEI) following moderate- (PEI-M) and high- (PEI-H) intensity isometric handgrip performed at 35% and 45% maximum voluntary contraction, respectively. Beat-to-beat heart rate (HR) and blood pressure were measured continuously. Rapid pulse trains of neck pressure and neck suction (+40 to -80 Torr) were applied to derive carotid baroreflex stimulus-response curves. Mean blood pressure increased significantly from rest during PEI-M (+13 +/- 3 mmHg) and was further augmented during PEI-H (+26 +/- 4 mmHg), indicating graded metaboreflex activation. However, the operating point gain and maximal gain (-0.51 +/- 0.09, -0.48 +/- 0.13, and -0.49 +/- 0.12 beats.min(-1).mmHg(-1) for rest; PEI-M and PEI-H) of the carotid-cardiac baroreflex function curve were unchanged from rest during PEI-M and PEI-H (P > 0.05 vs. rest). Furthermore, the carotid-cardiac baroreflex function curve was progressively reset rightward from rest to PEI-M to PEI-H, with no upward resetting. These findings suggest that the muscle metaboreflex contributes to the resetting of the carotid baroreflex control of HR; however, it would appear not to influence carotid-cardiac baroreflex responsiveness in humans, even with high-intensity activation during PEI.  相似文献   

9.
Stretching can lead to decreased muscle stiffness and has been associated with decreased force and power production. The purpose of this study was to investigate the acute effects of static stretching (SS) on running economy and endurance performance in trained female distance runners. Twelve long distance female (30 ± 9 years) runners were assessed for height (159.4 ± 7.4 cm), weight (54.8 ± 7.2 kg), % body fat (19.7 ± 2.8%), and maximal oxygen consumption (VO2max: 48.4 ± 5.1 ml·kg(-1)·min(-1)). Participants performed 2 sessions of 60-minute treadmill runs following a randomly assigned SS protocol or quiet sitting (QS). During the first 30 minutes (running economy), expired gases, heart rate (HR), and rating of perceived exertion (RPE) were recorded while the participant ran at 65% VO2max. During the final 30 minutes (endurance performance), distance covered, speed, HR, and RPE were recorded while the participant attempted to cover as much distance as possible. Repeated measures analyses of variance were performed on the data. Significance was accepted at p < 0.05. The SS measured by sit-and-reach increased flexibility (SS: 29.8 ± 8.3 vs. QS: 33.1 ± 8.1 cm) but had no effect on running economy (VO2: 33.7 ± 3.2 vs. 33.8 ± 2.3 ml·kg(-1)·min(-1)), calorie expenditure (270 ± 41 vs. 270 ± 41 kcal), HR (157 ± 10 vs. 160 ± 12 b·min(-1)), or endurance performance (5.5 ± 0.6 vs. 5.5 ± 0.7 km). These findings indicated that stretching did not have an adverse effect on endurance performance in trained women. This suggests that the performance decrements previously associated with stretching may not occur in trained women.  相似文献   

10.
Appropriate quantification of analytical and biological variation of thermoregulatory sweating has important practical utility for research design and statistical analysis. We sought to examine contributors to variability in local forearm sweating rate (SR) and sweating onset (SO) and to evaluate the potential for using bilateral measurements. Two women and eight men (26 ± 9 yr; 79 ± 12 kg) completed 5 days of heat acclimation and walked (1.8 l/min VO(2)) on three occasions for 30 min in 40°C, 20% RH, while local SR and SO were measured. Local SR measures among days were not different (2.14 ± 0.72 vs. 2.02 ± 0.79 vs. 2.31 ± 0.72 mg·cm(2)·min(-1), P = 0.19) nor was SO (10.47 ± 2.54 vs. 10.04 ± 2.97 vs. 9.87 ± 3.44 min P = 0.82). Bilateral SR (2.14 ± 0.72 vs. 2.16 ± 0.71 mg·cm(2)·min(-1), P = 0.56) and SO (10.47 ± 2.54 vs. 10.83 ± 2.48 min, P = 0.09) were similar and differences were ≤ 1 SD of day-to-day differences for a single forearm. Analytical imprecision (CV(a)), within (CV(i))-, and between (CV(g))-subjects' coefficient of variation for local SR were 2.4%, 22.3%, and 56.4%, respectively, and were 0%, 9.6%, and 41%, respectively, for SO. We conclude: 1) technologically, sweat capsules contribute negligibly to sweat measurement variation; 2) bilateral measures of SR and SO appear interchangeable; 3) when studying potential factors affecting sweating, changes in SO afford a more favorable signal-to-noise ratio vs. changes in SR. These findings provide a quantitative basis for study design and optimization of power/sample size analysis in the evaluation of thermoregulatory sweating.  相似文献   

11.
This study examined the torque-velocity and power-velocity relationships of quadriceps muscle function, stretch shortening cycle function, and leg-spring stiffness in sprint and endurance athletes. Isokinetic maximal knee extension torque was obtained from 7 sprinters and 7 endurance athletes using a Con-trex isokinetic dynamometer. Torque and power measures were corrected for lean-thigh cross-sectional area and lean-thigh volume, respectively. Stretch-shortening cycle function and muscle stiffness measurements were obtained while subjects performed single-legged squat, countermovement, and drop-rebound jumps on an inclined sledge and force-plate apparatus. The results indicated that sprinters generated, on average, 0.15 +/- 0.05 N.m.cm(-2) more torque across all velocities compared with endurance athletes. Significant differences were also found in the power-velocity relationships between the 2 groups. The sprinters performed significantly better than the endurance athletes on all jumps, but there were no differences in prestretch augmentation between the groups. The average vertical leg stiffness during drop jumps was significantly higher for sprinters (5.86 N.m(-1)) compared with endurance runners (3.38 N.m(-1)). The findings reinforce the need for power training to be carried out at fast contraction speeds but also show that SSC function remains important in endurance running.  相似文献   

12.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   

13.
Melatonin is synthesized and released into the circulation by the pineal gland in a circadian rhythm. Melatonin has been demonstrated to differentially alter blood flow to assorted vascular beds by the activation of different melatonin receptors in animal models. The purpose of the present study was to determine the effect of melatonin on blood flow to various vascular beds in humans. Renal (Doppler ultrasound), forearm (venous occlusion plethysmography), and cerebral blood flow (transcranial Doppler), arterial blood pressure, and heart rate were measured in 10 healthy subjects (29±1 yr; 5 men and 5 women) in the supine position for 3 min. The protocol began 45 min after the ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the other substance. Melatonin did not alter heart rate and mean arterial pressure. Renal blood flow velocity (RBFV) and renal vascular conductance (RVC) were lower during the melatonin trial compared with placebo (RBFV, 40.5±2.9 vs. 45.4±1.5 cm/s; and RVC, 0.47±0.02 vs. 0.54±0.01 cm·s(-1)·mmHg(-1), respectively). In contrast, forearm blood flow (FBF) and forearm vascular conductance (FVC) were greater with melatonin compared with placebo (FBF, 2.4±0.2 vs. 1.9±0.1 ml·100 ml(-1)·min(-1); and FVC, 0.029±0.003 vs. 0.023±0.002 arbitrary units, respectively). Melatonin did not alter cerebral blood flow measurements compared with placebo. Additionally, phentolamine (5-mg bolus) after melatonin reversed the decrease in RVC, suggesting that melatonin increases sympathetic outflow to the kidney to mediate renal vasoconstriction. In summary, exogenous melatonin differentially alters vascular blood flow in humans. These data suggest the complex nature of melatonin on the vasculature in humans.  相似文献   

14.
The purpose of this study was to examine the effects of dynamic stretching on running energy cost and endurance performance in trained male runners. Fourteen male runners performed both a 30-minute preload run at 65% VO2max and a 30-minute time trial to assess running energy cost and performance, respectively. The subjects repeated both the trials after either 15 minutes of dynamic stretching (i.e., experimental condition) or quiet sitting (i.e., control condition) while the order was balanced between the subjects to avoid any order effect. The total calories expended were determined for the 30-minute preload run, whereas the distance covered was measured in the time trial. Average resting VO2 increased significantly (p < 0.05) after dynamic stretching (prestretch: 6.2 ± 1.7 vs. poststretch: 8.4 ± 2.1 ml·kg(-1)·min(-1)) but not during the quiet-sitting condition. Caloric expenditure was significantly higher during the 30-minute preload run for the stretching (416.3 ± 44.9 kcal) compared with that during the quiet sitting (399.3 ± 50.4 kcal) (p < 0.05). There was no difference in the distance covered after quiet sitting (6.3 ± 1.1 km) compared with that for the stretching condition (6.1 ± 1.3 km). These findings suggest that dynamic stretching does not affect running endurance performance in trained male runners.  相似文献   

15.
We aimed to investigate the interaction between the arterial baroreflex and muscle metaboreflex [as reflected by alterations in the dynamic responses shown by leg blood flow (LBF: by the ultrasound Doppler method), leg vascular conductance (LVC), mean arterial blood pressure (MAP), and heart rate (HR)] in humans. In 12 healthy subjects (10 men and 2 women), who performed sustained 1-min handgrip exercise at 50% maximal voluntary contraction followed immediately by an imposed postexercise muscle ischemia (PEMI), 5-s periods of neck pressure (NP; 50 mmHg) or neck suction (NS; -60 mmHg) were used to evaluate carotid baroreflex function both at rest (Con) and during PEMI. First, the decreases in LVC and LBF and the augmentation of MAP elicited by NP were all greater during PEMI than in Con (DeltaLVC, -1.2 +/- 0.2 vs. -1.9 +/- 0.2 ml.min(-1).mmHg(-1); DeltaLBF, -97.3 +/- 11.2 vs. -177.0 +/- 21.8 ml/min; DeltaMAP, 6.7 +/- 1.2 vs. 11.5 +/- 1.4 mmHg, Con vs. PEMI; each P < 0.05). Second, in Con, NS significantly increased both LVC and LBF (DeltaLVC, 0.9 +/- 0.2 ml.min(-1).mmHg(-1); DeltaLBF, 46.6 +/- 9.8 ml/min; significant change from baseline: each P < 0.05), and, whereas during PEMI no significant increases in LVC and LBF occurred during NS itself (DeltaLVC, 0.2 +/- 0.1 ml.min(-1).mmHg(-1); DeltaLBF, 10.8 +/- 9.6 ml/min; each P > 0.05), a decrease was evident in each parameters at 5 s after the cessation of NS. Third, during PEMI, the decrease in MAP elicited by NS was smaller (DeltaMAP, -8.4 +/- 1.0 vs. -5.8 +/- 0.4 mmHg, Con vs. PEMI; P < 0.05), and it recovered to its initial level more quickly after NS (vs. Con). Finally, however, the HR responses to NS and NP were not different between PEMI and Con. These results suggest that during muscle metaboreflex activation in humans, the arterial baroreflex dynamic effect on peripheral vascular conductance is modulated, as exemplified by 1) an augmentation of the NP-induced LVC decrease, and 2) a loss of the NS-induced LVC increase.  相似文献   

16.
The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m?2) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg?1·min?1) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s?1) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg?1, p < 0.01), whereas no changes in body mass occurred. No significant differences between the groups and no significant interaction (time × intervention) were found for VO2 (absolute and relative to VO2peak) at defined marathon running velocities (2.4 and 2.8 m·s?1) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L?1). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short intervention period.  相似文献   

17.
To assess potential mechanisms responsible for the lower sudomotor thermosensitivity in women during exercise, we examined sex differences in sudomotor function and skin blood flow (SkBF) during exercise performed at progressive increases in the requirement for heat loss. Eight men and eight women cycled at rates of metabolic heat production of 200, 250, and 300 W/m(2) of body surface area, with each rate being performed sequentially for 30 min. The protocol was performed in a direct calorimeter to measure evaporative heat loss (EHL) and in a thermal chamber to measure local sweat rate (LSR) (ventilated capsule), SkBF (laser-Doppler), sweat gland activation (modified iodine-paper technique), and sweat gland output (SGO) on the back, chest, and forearm. Despite a similar requirement for heat loss between the sexes, significantly lower increases in EHL and LSR were observed in women (P ≤ 0.001). Sex differences in EHL and LSR were not consistently observed during the first and second exercise periods, whereas EHL (348 ± 13 vs. 307 ± 9 W/m(2)) and LSR on the back (1.61 ± 0.07 vs. 1.20 ± 0.09 mg·min(-1)·cm(-2)), chest (1.33 ± 0.06 vs. 1.08 ± 0.09 mg·min(-1)·cm(-2)), and forearm (1.53 ± 0.07 vs. 1.20 ± 0.06 mg·min(-1)·cm(-2), men vs. women) became significantly greater in men during the last exercise period (P < 0.05). At each site, differences in LSR were solely due to a greater SGO in men, as opposed to differences in sweat gland activation. In contrast, no sex differences in SkBF were observed throughout the exercise period. The present study demonstrates that sex differences in sudomotor function are only evidenced beyond a certain requirement for heat loss, solely through differences in SGO. In contrast, the lower EHL and LSR in women are not paralleled by a lower SkBF response.  相似文献   

18.
The purpose of this investigation was to determine whether central command activated regions of the insular cortex, independent of muscle metaboreflex activation and blood pressure elevations. Subjects (n = 8) were studied during 1) rest with cuff occlusion, 2) static handgrip exercise (SHG) sufficient to increase mean blood pressure (MBP) by 15 mmHg, and 3) post-SHG exercise cuff occlusion (PECO) to sustain the 15-mmHg blood pressure increase. Data were collected for heart rate, MBP, ratings of perceived exertion and discomfort, and regional cerebral blood flow (rCBF) by using single-photon-emission computed tomography. When time periods were compared when MBP was matched during SHG and PECO, heart rate (7 +/- 3 beats/min; P < 0.05) and ratings of perceived exertion (15 +/- 2 units; P < 0.05) were higher for SHG. During SHG, there were significant increases in rCBF for hand sensorimotor (9 +/- 3%), right inferior posterior insula (7 +/- 3%), left inferior anterior insula (8 +/- 2%), and anterior cingluate regions (6 +/- 2%), not found during PECO. There was significant activation of the inferior (ventral) thalamus and right inferior anterior insular for both SHG and PECO. Although prior studies have shown that regions of the insular cortex can be activated independent of mechanoreflex input, it was not presently assessed. These findings provide evidence that there are rCBF changes within regions of the insular and anterior cingulate cortexes related to central command per se during handgrip exercise, independent of metaboreflex activation and blood pressure elevation.  相似文献   

19.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

20.
To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 +/- 4.0 (SD) vs. men 24.9 +/- 4.5 yr] but different forearm muscle strength (women 290.7 +/- 44.4 vs. men 509.6 +/- 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time (r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 +/- 113.0 vs. 831.3 +/- 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 +/- 5.3 vs. men 14.5 +/- 4.9 ml.min(-1).100 ml(-1)). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 +/- 0.05 vs. men 0.11 +/- 0.04 ml.min(-1).100 ml(-1).mmHg(-1)). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号