首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
Prestin is the motor protein responsible for the somatic electromotility of cochlear outer hair cells and is essential for normal hearing sensitivity and frequency selectivity of mammals. Prestin is a member of mammalian solute-linked carrier 26 (SLC26) anion exchangers, a family of membrane proteins capable of transporting a wide variety of monovalent and divalent anions. SLC26 transporters play important roles in normal human physiology in different tissues, and many of them are involved in genetic diseases. SLC26 and related SulP transporters carry a hydrophobic membrane core and a C-terminal cytosolic portion that is essential in plasma membrane targeting and protein function. This C-terminal portion is mainly composed of a STAS (sulfate transporters and anti-sigma factor antagonist) domain, whose name is due to a remote but significant sequence similarity with bacterial ASA (anti-sigma factor antagonist) proteins. Here we present the crystal structure at 1.57 Å resolution of the cytosolic portion of prestin, the first structure of a SulP transporter STAS domain, and its characterization in solution by heteronuclear multidimensional NMR spectroscopy. Prestin STAS significantly deviates from the related bacterial ASA proteins, especially in the N-terminal region, which—although previously considered merely as a generic linker between the domain and the last transmembrane helix—is indeed fully part of the domain. Hence, unexpectedly, our data reveal that the STAS domain starts immediately after the last transmembrane segment and lies beneath the lipid bilayer. A structure-function analysis suggests that this model can be a general template for most SLC26 and SulP anion transporters and supports the notion that STAS domains are involved in functionally important intramolecular and intermolecular interactions. Mapping of disease-associated or functionally harmful mutations on STAS structure indicates that they can be divided into two categories: those causing significant misfolding of the domain and those altering its interaction properties.  相似文献   

2.
Escherichia coli YchM is a member of the SLC26 (SulP) family of anion transporters with an N-terminal membrane domain and a C-terminal cytoplasmic STAS domain. Mutations in human members of the SLC26 family, including their STAS domain, are linked to a number of inherited diseases. Herein, we describe the high-resolution crystal structure of the STAS domain from E. coli YchM isolated in complex with acyl-carrier protein (ACP), an essential component of the fatty acid biosynthesis (FAB) pathway. A genome-wide genetic interaction screen showed that a ychM null mutation is synthetically lethal with mutant alleles of genes (fabBDHGAI) involved in FAB. Endogenous YchM also copurified with proteins involved in fatty acid metabolism. Furthermore, a deletion strain lacking ychM showed altered cellular bicarbonate incorporation in the presence of NaCl and impaired growth at alkaline pH. Thus, identification of the STAS-ACP complex suggests that YchM sequesters ACP to the bacterial membrane linking bicarbonate transport with fatty acid metabolism.  相似文献   

3.
4.
The structure and intrinsic activities of conserved STAS domains of the ubiquitous SulP/SLC26 anion transporter superfamily have until recently remained unknown. Here we report the heteronuclear, multidimensional NMR spectroscopy solution structure of the STAS domain from the SulP/SLC26 putative anion transporter Rv1739c of Mycobacterium tuberculosis. The 0.87-Å root mean square deviation structure revealed a four-stranded β-sheet with five interspersed α-helices, resembling the anti-σ factor antagonist fold. Rv1739c STAS was shown to be a guanine nucleotide-binding protein, as revealed by nucleotide-dependent quench of intrinsic STAS fluorescence and photoaffinity labeling. NMR chemical shift perturbation analysis partnered with in silico docking calculations identified solvent-exposed STAS residues involved in nucleotide binding. Rv1739c STAS was not an in vitro substrate of mycobacterial kinases or anti-σ factors. These results demonstrate that Rv1739c STAS binds guanine nucleotides at physiological concentrations and undergoes a ligand-induced conformational change but, unlike anti-σ factor antagonists, may not mediate signals via phosphorylation.  相似文献   

5.
The SLC26/SulP (solute carrier/sulphate transporter) proteins are a ubiquitous superfamily of secondary anion transporters. Prior studies have focused almost exclusively on eukaryotic members and bacterial members are frequently classified as sulphate transporters based on their homology with SulP proteins from plants and fungi. In this study we have examined the function and physiological role of the Escherichia coli Slc26 homologue, YchM. We show that there is a clear YchM‐dependent growth defect when succinate is used as the sole carbon source. Using an in vivo succinate transport assay, we show that YchM is the sole aerobic succinate transporter active at acidic pH. We demonstrate that YchM can also transport other C4‐dicarboxylic acids and that its substrate specificity differs from the well‐characterized succinate transporter, DctA. Accordingly ychM was re‐designated dauA (dicarboxylic acid uptake system A). Finally, our data suggest that DauA is a protein with transport and regulation activities. This is the first report that a SLC26/SulP protein acts as a C4‐dicarboxylic acid transporter and an unexpected new function for a prokaryotic member of this transporter family.  相似文献   

6.
Sulfate transporters in plants represent a family of proteins containing transmembrane domains that constitute the catalytic part of the protein and a short linking region that joins this catalytic moiety with a C-terminal STAS domain. The STAS domain resembles an anti-sigma factor antagonist of Bacillus subtilis, which is one distinguishing feature of the SLC26 transporter family; this family includes transporters for sulfate and other anions such as iodide and carbonate. Recent work has demonstrated that this domain is critical for the activity of Arabidopsis thaliana sulfate transporters, and specific lesions in this domain, or the exchange of STAS domains between different sulfate transporters, can severely impair transport activity. In this work we generated a Saccharomyces cerevisiae expression library of the A. thaliana Sultr1;2 gene with random mutations in the linking region-STAS domain and identified STAS domain lesions that altered Sultr1;2 biogenesis and/or function. A number of mutations in the beta-sheet that forms the core of the STAS domain prevented intracellular accumulation of Sultr1;2. In contrast, the linking region and one surface of the STAS domain containing N termini of the first and second alpha-helices have a number of amino acids critical for the function of the protein; mutations in these regions still allow protein accumulation in the plasma membrane, but the protein is no longer capable of efficiently transporting sulfate into cells. These results suggest that the STAS domain is critical for both the activity and biosynthesis/stability of the transporter, and that STAS sub-domains correlate with these specific functions.  相似文献   

7.
Abstract

We have completed the first comprehensive transmembrane topology determination for a member of the ubiquitous and important SulP/SLC26 family of coupled anion transporters found in eukaryotes and prokaryotes. The prokaryotic member that we have mapped, namely BicA from Synechococcus PCC7002, is an important Na+-dependent bicarbonate transporter that is likely to play a major role in global primary productivity via the CO2 concentrating mechanism in cyanobacteria. We experimentally determined the topology based on phoA-lacZ topology mapping combined with reference to a range of predictive models based on hydropathy analysis and positive charge distribution. The 12-TMH structure for BicA is characterized by tight turns between several pairs of TMH and it features a prominent cytoplasmically-located STAS domain that is characteristic of the SulP family. A key difference from previous predicted models is that we identify a cytoplasmic loop between helices 8 and 9 where previous models suggested a TMH. This region includes a highly conserved motif that defines the SulP family. The identification of this region as cytoplasmic, rather than transmembrane, has implications for the function and perhaps regulation of SulP family members. This finding is used to reinterpret mutagenesis data relating to highly conserved residues in this region from both plant and human SulP transporters.  相似文献   

8.
Congenital chloride-losing diarrhea (CLD) is a genetic disorder causing watery stool and dehydration. Mutations in SLC26A3 (solute carrier 26 family member 3), which functions as a coupled Cl(-)/HCO(3)(-) exchanger, cause CLD. SLC26A3 is a membrane protein predicted to contain 12 transmembrane-spanning alpha-helices and a C-terminal STAS (sulfate transporters and anti-sigma-factor) domain homologous to the bacterial anti-sigma-factor antagonists. The STAS domain is required for SLC26A3 Cl(-)/HCO(3)(-) exchange function and for the activation of cystic fibrosis transmembrane conductance regulator by SLC26A3. Here we investigate the molecular mechanism(s) by which four CLD-causing mutations (DeltaY526/7, I544N, I675/6ins, and G702Tins) in the STAS domain lead to disease. In a heterologous mammalian expression system biochemical, immunohistochemical, and ion transport experiments suggest that the four CLD mutations cause SLC26A3 transporter misfolding and/or mistrafficking. Expression studies with the isolated STAS domain suggest that the I675/6ins and G702Tins mutations disrupt the STAS domain directly, whereas limited proteolysis experiments suggest that the DeltaY526/7 and I544N mutations affect a later step in the folding and/or trafficking pathway. The data suggest that these CLD-causing mutations cause disease by at least two distinct molecular mechanisms, both ultimately leading to loss of functional protein at the plasma membrane.  相似文献   

9.
The C-terminal region of sulfate transporters from plants and animals belonging to the SLC26 family members shares a weak but significant similarity with the Bacillus sp. anti-anti-sigma protein SpoIIAA, thus defining the STAS domain (sulfate transporter and anti-sigma antagonist). The present study is a structure/function analysis of the STAS domain of SULTR1.2, an Arabidopsis thaliana sulfate transporter. A three-dimensional model of the SULTR1.2 STAS domain was built which indicated that it shares the SpoIIAA folds. Moreover, the phosphorylation site, which is necessary for SpoIIAA activity, is conserved in the SULTR1.2 STAS domain. The model was used to direct mutagenesis studies using a yeast mutant defective for sulfate transport. Truncation of the whole SULTR1.2 STAS domain resulted in the loss of sulfate transport function. Analyses of small deletions and mutations showed that the C-terminal tail of the SULTR1.2 STAS domain and particularly two cysteine residues plays an important role in sulfate transport by SULTR1.2. All the substitutions made at the putative phosphorylation site Thr-587 led to a complete loss of the sulfate transport function of SULTR1.2. The reduction or suppression of sulfate transport of the SULTR1.2 mutants in yeast was not due to an incorrect targeting to the plasma membrane. Both our three-dimensional modeling and mutational analyses strengthen the hypothesis that the SULTR1.2 STAS domain is involved in protein-protein interactions that could control sulfate transport.  相似文献   

10.
We report 1HN, 15N, and 13C resonance assignments for the 15.6 kDa STAS domain of the putative sulfate transporter of Mycobacterium tuberculosis, Rv1739c, using heteronuclear, multidimensional NMR spectroscopy. Rv1739c is a SulP anion permease, related in structure to the SLC26 gene family of metazoan anion exchangers and anion channels.  相似文献   

11.
Growth and virulence of mycobacteria requires sulfur uptake. The Mycobacterium tuberculosis genome contains, in addition to the ABC sulfate permease cysTWA, three SLC26-related SulP genes of unknown function. We report that induction of Rv1739c expression in E. coli increased bacterial uptake of sulfate, but not Cl(-), formate, or oxalate. Uptake was time-dependent, maximal at pH 6.0, and exhibited a K(1/2) for sulfate of 4.0 muM. Na(+)-independent sulfate uptake was not reduced by bicarbonate, nitrate, or phosphate, but was inhibited by sulfite, selenate, thiosulfate, N-ethylmaleimide and carbonyl cyanide 3-chloro-phenylhydrazone. Sulfate uptake was also increased by overexpression of the Rv1739c transmembrane domain, but not of the cytoplasmic C-terminal STAS domain. Mutation to serine of the three cysteine residues of Rv1739c did not affect magnitude, pH-dependence, or pharmacology of sulfate uptake. Expression of Rv1739c in a M. bovis BCG strain lacking the ABC sulfate permease subunit CysA could not complement sulfate auxotrophy. Moreover, inducible expression of Rv1739c in an E. coli strain lacking CysA did not increase sulfate uptake by intact cells. Our data show that facilitation of bacterial sulfate uptake by Rv1739c requires CysA and its associated sulfate permease activity, and suggest that Rv1739c may be a CysTWA-dependent sulfate transporter.  相似文献   

12.
Growth and virulence of mycobacteria requires sulfur uptake. The Mycobacterium tuberculosis genome contains, in addition to the ABC sulfate permease cysTWA, three SLC26-related SulP genes of unknown function. We report that induction of Rv1739c expression in E. coli increased bacterial uptake of sulfate, but not Cl(-), formate, or oxalate. Uptake was time-dependent, maximal at pH 6.0, and exhibited a K(1/2) for sulfate of 4.0 muM. Na(+)-independent sulfate uptake was not reduced by bicarbonate, nitrate, or phosphate, but was inhibited by sulfite, selenate, thiosulfate, N-ethylmaleimide and carbonyl cyanide 3-chloro-phenylhydrazone. Sulfate uptake was also increased by overexpression of the Rv1739c transmembrane domain, but not of the cytoplasmic C-terminal STAS domain. Mutation to serine of the three cysteine residues of Rv1739c did not affect magnitude, pH-dependence, or pharmacology of sulfate uptake. Expression of Rv1739c in a M. bovis BCG strain lacking the ABC sulfate permease subunit CysA could not complement sulfate auxotrophy. Moreover, inducible expression of Rv1739c in an E. coli strain lacking CysA did not increase sulfate uptake by intact cells. Our data show that facilitation of bacterial sulfate uptake by Rv1739c requires CysA and its associated sulfate permease activity, and suggest that Rv1739c may be a CysTWA-dependent sulfate transporter.  相似文献   

13.
Sharma AK  Ye L  Alper SL  Rigby AC 《The FEBS journal》2012,279(3):420-436
Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (μs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.  相似文献   

14.
SLC26 proteins function as anion exchangers, channels, and sensors. Previous cellular studies have shown that Slc26a3 and Slc26a6 interact with the R-region of the cystic fibrosis transmembrane conductance regulator (CFTR), (R)CFTR, via the Slc26-STAS (sulfate transporter anti-sigma) domain, resulting in mutual transport activation. We recently showed that Slc26a9 has both nCl-HCO3 exchanger and Cl channel function. In this study, we show that the purified STAS domain of Slc26a9 (a9STAS) binds purified (R)CFTR. When Slc26a9 and (R)CFTR fragments are co-expressed in Xenopus oocytes, both Slc26a9-mediated nCl-HCO3 exchange and Cl currents are almost fully inhibited. Deletion of the Slc26a9 STAS domain (a9-ΔSTAS) virtually eliminated the Cl currents with only a modest affect on nCl-HCO3 exchange activity. Co-expression of a9-ΔSTAS and the (R)CFTR fragment did not alter the residual a9-ΔSTAS function. Replacing the Slc26a9 STAS domain with the Slc26a6 STAS domain (a6-a9-a6) does not change Slc26a9 function and is no longer inhibited by (R)CFTR. These data indicate that the Slc26a9-STAS domain, like other Slc26-STAS domains, binds CFTR in the R-region. However, unlike previously reported data, this binding interaction inhibits Slc26a9 ion transport activity. These results imply that Slc26-STAS domains may all interact with (R)CFTR but that the physiological outcome is specific to differing Slc26 proteins, allowing for dynamic and acute fine tuning of ion transport for various epithelia.Slc26 genes and proteins have attracted the attention of physiologists and geneticists. Why? Slc26a1 (Sat-1) was characterized as a Na+-independent SO42− transporter (1). Given the transport characteristics of the founding member of the gene family, Slc26 proteins were assumed to be sulfate transporters. Disease phenotypes, clone characterization, and family additions demonstrate that the Slc26 proteins are anion transporters or channels (24). These proteins have varied tissue expression patterns. At one extreme, Slc26a5 in mammals is found in the hair cells of the inner ear (5), whereas Slc26a2 (DTDST) is virtually ubiquitous in epithelial tissues (2).Several Slc26 proteins are found in the epithelia of the lung, intestine, stomach, pancreas, and kidney, usually in apical membranes. Interestingly these are also tissues and membranes in which the cystic fibrosis transmembrane conductance regulator (CFTR)5 has been found functionally or by immunohistochemistry. Ko and co-workers (68) examined the distribution of Slc26a3 and Slc26a6 in HCO3 secretory epithelia, and asked if an interaction might occur between these Slc26 proteins and CFTR. In particular, these studies indicate that in expression systems, there is a reciprocal-stimulatory interaction of the STAS (sulfate transporter anti-sigma) domains of Slc26a3 and Slc26a6 with the regulatory region (R-region) of CFTR. These investigators hypothesized that this stimulatory interaction could account for the differences in pancreatic insufficiency and sufficiency observed in cystic fibrosis patients. Nevertheless, knock-out Slc26a6 mouse studies reveal more complicated cell and tissue physiology (see “Discussion”).Slc26a9 has been reported to be a Cl-HCO3 exchanger (9, 10) or a large Cl conductance (3, 11, 12). Loriol and co-workers (12) indicated that SLC26A9 has a Cl conductance that may be stimulated by HCO3. Two other groups have indicated that the Cl conductance is not affected by the presence of HCO3 (10, 11). We have recently demonstrated that Slc26a9 functions as both an electrogenic nCl-HCO3 exchanger and a Cl channel (10). Dorwart and colleagues (11) found that WNK kinases inhibited the SLC26A9 Cl conductance but that this effect was independent of kinase activity. One group has a preliminary report indicating that WNK3 decreased Cl uptake, whereas WNK4 increased Cl uptake via Slc26a9 expressed in Xenopus oocytes (13).Slc26a9 and CFTR are also co-expressed in several tissues. Slc26a9 protein has been localized to epithelia of the stomach and lung (9, 10, 14), although mRNA is also detectable in brain, heart, kidney, small intestine, thymus, and ovary (10). The R-region of CFTR was previously shown to increase the activity of Slc26a3 and Slc26a6 by interaction with STAS domains (6, 15, 16). Because Slc26a9 displays several different modes of ion transport, we asked if the R-region of CFTR would also increase the activity of Slc26a9. Our results indicate that the R-region of CFTR does interact with the STAS domain of Slc26a9. However, in the case of Slc26a9 this apparently similar interaction results in inhibition of Slc26a9 ion transport.  相似文献   

15.
The SulP family (including the SLC26 family) is a diverse family of anion transporters found in all domains of life, with different members transporting different anions. We used sequence and bioinformatics analysis of helices 1 and 2 of SulP family members to identify a conserved motif, extending the previously defined 'sulfate transporter motif'. The analysis showed that in addition to being highly conserved in both sequence and spacing, helices 1 and 2 contain a significant number of polar residues and are predicted to be buried within the protein interior, with at least some faces packed closely against other helices. This suggests a significant functional role for this region and we tested this by mutating polar residues in helices 1 and 2 in the sulfate transporter, SHST1. All mutations made, even those removing only a single hydroxyl group, had significant effects on transport. Many mutations abolished transport without affecting plasma membrane expression of the mutant protein, suggesting a functional role for these residues. Different helical faces appear to have different roles, with the most severe effects being localised to two interacting faces of helices 1 and 2. Our results confirm the predicted importance of conserved polar residues in helices 1 and 2 and suggest that transport of sulfate by SHST1 is dependent on a network of polar and aromatic interactions between these two helices.  相似文献   

16.
Sulfate transporters in plants and animals are structurally conserved and have an amino-terminal domain that functions in transport and a carboxyl-terminal region that has been designated the STAS domain. The STAS domain in sulfate transporters has significant similarity to bacterial anti-sigma factor antagonists. To determine if the STAS domain has a role in controlling the activity of sulfate transporters, their stability, or their localization to the plasma membrane, we examined the effect of deleting or modifying the STAS domain of dominant sulfate transporters in roots of Arabidopsis thaliana. The A. thaliana Sultr1;2 and Sultr1;1 sulfate transporters rescue the methionine-dependent growth phenotype of the yeast sulfate transporter mutant strain CP154-7B. Constructs of Sultr1;2 in which the STAS domain was deleted (DeltaSTAS) resulted in synthesis of a truncated polypeptide that was unable to rescue the CP154-7B phenotype. The inability of these constructs to rescue the mutant phenotype probably reflected both low level cellular accumulation of the transporter and the inability of the truncated protein to localize to the plasma membrane. Fusing the STAS domain from other sulfate transporters to Sultr1;2 DeltaSTAS constructs restored elevated accumulation and plasma membrane localization, although the kinetics of sulfate uptake in the transformants were markedly altered with respect to transformants synthesizing wild-type Sultr1;2 protein. These results suggest that the STAS domain is essential, either directly or indirectly, for facilitating localization of the transporters to the plasma membrane, but it also appears to influence the kinetic properties of the catalytic domain of transporters.  相似文献   

17.
The solute carrier 6 (SLC6) is a family of ion-dependent transporters that mediate uptake into the cell of osmolytes such as neurotransmitters and amino acids. Four SLC6 members transport GABA, a key neurotransmitter that triggers inhibitory signaling pathways via various receptors (e.g., GABAA). The GABA transporters (GATs) regulate the concentration of GABA available for signaling and are thus targeted by a variety of anticonvulsant and relaxant drugs. Here, we characterize GAT-2, a transporter that plays a role in peripheral GABAergic mechanisms, by constructing comparative structural models based on crystallographic structures of the leucine transporter LeuT. Models of GAT-2 in two different conformations were constructed and experimentally validated, using site-directed mutagenesis. Computational screening of 594,166 compounds including drugs, metabolites, and fragment-like molecules from the ZINC database revealed distinct ligands for the two GAT-2 models. 31 small molecules, including high scoring compounds and molecules chemically related to known and predicted GAT-2 ligands, were experimentally tested in inhibition assays. Twelve ligands were found, six of which were chemically novel (e.g., homotaurine). Our results suggest that GAT-2 is a high selectivity/low affinity transporter that is resistant to inhibition by typical GABAergic inhibitors. Finally, we compared the binding site of GAT-2 with those of other SLC6 members, including the norepinephrine transporter and other GATs, to identify ligand specificity determinants for this family. Our combined approach may be useful for characterizing interactions between small molecules and other membrane proteins, as well as for describing substrate specificities in other protein families.  相似文献   

18.
The 'Solute Carrier Family SLC10' consists of six annotated members in humans, comprising two bile acid carriers (SLC10A1 and SLC10A2), one steroid sulfate transporter (SLC10A6), and three orphan carriers (SLC10A3 to SLC10A5). In this study we report molecular characterization and expression analysis of a novel member of the SLC10 family, SLC10A7, previously known as C4orf13. SLC10A7 proteins consist of 340-343 amino acids in humans, mice, rats, and frogs and show an overall amino acid sequence identity of >85%. SLC10A7 genes comprise 12 coding exons and show broad tissue expression pattern. When expressed in Xenopus laevis oocytes and HEK293 cells, SLC10A7 was detected in the plasma membrane but revealed no transport activity for bile acids and steroid sulfates. By immunofluorescence analysis of dual hemagglutinin (HA)- and FLAG-labeled SLC10A7 proteins in HEK293 cells, we established a topology of 10 transmembrane domains with an intracellular cis orientation of the N-terminal and C-terminal ends. This topology pattern is clearly different from the seven-transmembrane domain topology of the other SLC10 members but similar to hitherto uncharacterized non-vertebrate SLC10A7-related proteins. In contrast to the established SLC10 members, which are restricted to the taxonomic branch of vertebrates, SLC10A7-related proteins exist also in yeasts, plants, and bacteria, making SLC10A7 taxonomically the most widespread member of this carrier family. Vertebrate and bacterial SLC10A7 proteins exhibit >20% sequence identity, which is higher than the sequence identity of SLC10A7 to any other member of the SLC10 carrier family.  相似文献   

19.
Simple flexible programs (TREEMOMENT and PILEUPMOMENT) are described for depicting the average amphipathicity (hydrophobic moment) along multiply aligned sequences of a family of evolutionarily related proteins. The programs are applicable to any number of aligned sequences and can be set for any desired angle corresponding to a residue repeat unit in a protein secondary structural element such as 100 per residue for an alpha- helix or 180 per residue for a beta-strand. These programs can be used to identify amphipathic regions common to the members of a protein family. The use of these programs is exemplified by showing that some families of integral membrane transport proteins (i.e. permeases of the bacterial phosphotransferase system (PTS) and the anion exchangers of animals) exhibit strikingly amphipathic alpha-helical structures immediately preceding the first hydrophobic transmembrane segment of their membrane-embedded domain(s). Other families, such as the major facilitator superfamily of uniporters, symporters and antiporters, do not exhibit this structural feature. The amphipathic structures in PTS permeases have been implicated in membrane insertion during biogenesis.  相似文献   

20.
The aspartate transporter from Pyrococcus horikoshii (GltPh) is a model for the structure of the SLC1 family of amino acid transporters. Crystal structures of GltPh provide insight into mechanisms of ion coupling and substrate transport; however, structures have been solved in the absence of a lipid bilayer so they provide limited information regarding interactions that occur between the protein and lipids of the membrane. Here, we investigated the effect of the lipid environment on aspartate transport by reconstituting GltPh into liposomes of defined lipid composition where the primary lipid is phosphatidylethanolamine (PE) or its methyl derivatives. We showed that the rate of aspartate transport and the transmembrane orientation of GltPh were influenced by the primary lipid in the liposomes. In PE liposomes, we observed the highest transport rate and showed that 85% of the transporters were orientated right-side out, whereas in trimethyl PE liposomes, 50% of transporters were right-side out, and we observed a 4-fold reduction in transport rate. Differences in orientation can only partially explain the lipid composition effect on transport rate. Crystal structures of GltPh revealed a tyrosine residue (Tyr-33) that we propose interacts with lipid headgroups during the transport cycle. Based on site-directed mutagenesis, we propose that a cation-π interaction between Tyr-33 and the lipid headgroups can influence conformational flexibility of the trimerization domain and thus the rate of transport. These results provide a specific example of how interactions between membrane lipids and membrane-bound proteins can influence function and highlight the importance of the role of the membrane in transporter function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号