首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Free radical research》2013,47(12):1435-1444
Abstract

The chemopreventive chalcone xanthohumol (Xh) has been reported to decrease xanthine oxidase (XOD) catalysed formation of formazan from nitroblue tetrazolium (NBT) and is discussed as a potent scavenger of superoxide. Re-evaluation of the scavenging capacity indicated that Xh disturbed detection of superoxide with NBT, in case of an insufficient NBT/Xh ratio. Xh lacked superoxide scavenging activity in contrast to the Xh-derivative 3′-hydroxy-Xh with catechol substructure, used as positive control. This was shown by the use of sufficient concentration of NBT and other detectors such as hydroxylamine, XTT, cytochrome c and hydroethidine. HPLC analysis of reaction products in a xanthine/XOD/peroxidase system demonstrated beside enhanced inhibition of NBT-formazan by Xh that NBT even prevented oxidation of Xh. p-coumaric acid or ferulic acid could replace Xh in that system, indicating that superoxide detection using NBT is likely jeopardized by interference of phenoxyl-radicals. Furthermore, this study provides evidence that Xh can moderately generate superoxide via auto-oxidation.  相似文献   

2.
The superoxide scavenging activities of 12 flavonoids were measured. The superoxide anions were generated by a hypoxanthine-xanthine oxidase system and measured by the nitrite method. The results showed that the scavenging ability enhanced with an increasing number of hydroxyl groups in rings B. Substitution at C3 position with a hydroxyl group increased the activity. Compared to a methoxyl group or a glycoside in this position, a free hydroxyl group showed the highest activity. A saturated C2−C3 bond showed a higher activity than a unsaturated bond. The absence of a carbonyl group at C4 position increased the activity.  相似文献   

3.
Neelaredoxin is a mononuclear iron protein widespread among prokaryotic anaerobes and facultative aerobes, including human pathogens. It has superoxide scavenging activity, but the exact mechanism by which this process occurs has been controversial. In this report, we present the study of the reaction of superoxide with the reduced form of neelaredoxin from the hyperthermophilic archaeon Archaeoglobus fulgidus by pulse radiolysis. This protein reduces superoxide very efficiently (k = 1.5 x 10(9) m(-1)s(-1)), and the dismutation activity is rate-limited, in steady-state conditions, by the much slower superoxide oxidation step. These data show unambiguously that the superfamily of neelaredoxin-like proteins (including desulfoferrodoxin) presents a novel type of reactivity toward superoxide, a result of particular relevance for the understanding of both oxygen stress response mechanisms and, in particular, how pathogens may respond to the oxidative burst produced by the defense cells in eukaryotes. The actual in vivo functioning of these enzymes will depend strongly on the cell redox status. Further insight on the catalytic mechanism was obtained by the detection of a transient intermediate ferric species upon oxidation of neelaredoxin by superoxide, detectable by visible spectroscopy with an absorption maximum at 610 nm, blue-shifted approximately 50 nm from the absorption of the resting ferric state. The role of the iron sixth ligand, glutamate-12, in the reactivity of neelaredoxin toward superoxide was assessed by studying two site-directed mutants: E12Q and E12V.  相似文献   

4.
Reaction rate constants of superoxide scavenging by plant antioxidants   总被引:4,自引:0,他引:4  
Plant phenols may exert protective effects by scavenging superoxide, which is implicated in tissue damage and accelerated inactivation of vasorelaxing nitric oxide. Preventing the interaction of superoxide with tissue biomolecules depends not only on the extent of superoxide scavenging but also on scavenging velocity. However, information on superoxide scavenging kinetics of plant phenols is scarce. We describe an improved lucigenin-based chemiluminescence assay for kinetic analysis. The use of potassium superoxide (KO2) as a nonenzymatic superoxide source allowed simple and reliable determination of the second-order reaction rate constants between superoxide and plant antioxidants at physiologically relevant conditions, avoiding unspecific effects of other reactive oxygen species or superoxide-generating enzymes. We calculated the rate constants for phenols of different structures, ranging from 2.9 × 103 mol−1 l s−1 for morin to 2.9 × 107 mol−1 l s−1 for proanthocyanidins. Compounds with pyrogallol or catechol moieties were revealed as the most rapid superoxide scavengers, and the gallate moiety was found to be the minimal essential structure for maximal reaction rate constants with superoxide.  相似文献   

5.
The radical and superoxide scavenging activities of oxidized matairesinols were examined. It could be assumed that the free benzylic position was important for higher radical scavenging activity. The different level of activity was observed between 7'-oxomatairesinol (Mat 2) and 7-oxomatairesinol (Mat 3). The activity of 8-hydroxymatairesinol was lower than that of matairesinol (Mat 1). The superoxide scavenging activity of the oxidized matairesinols was also demonstrated for the first time. It is assumed that the pKa value of phenol in the oxidized matairesinols affected this activity.  相似文献   

6.
Ceruloplasmin and extracellular-superoxide dismutase are similar in physical properties. Both are found in extracellular fluids and both are scavengers of the superoxide radical. The relationship between the two proteins was further explored in the present investigation. Ceruloplasmin preparations were found to be commonly contaminated with extracellular-superoxide dismutase. In one preparation, 80% of the superoxide dismutase activity was due to extracellular-superoxide dismutase. Ceruloplasmin, freed from contaminating superoxide dismutase, was found to catalytically dismute the superoxide anion radical with a rate constant of about 1.0 × 104 M s−1 per copper atom. Under physiological conditions with a low rate of superoxide production, ceruloplasmin preferentially reacts stoichiometrically with the superoxide radical with a rate constant of about 2 × 105 M−1 s−1 per copper atom. Under such conditions, the reaction does not result in hydrogen peroxide formation. From the kinetic data obtained it was calculated that in normal human plasma, extracellular-superoxide dismutase will scavenge about twice as much superoxide as ceruloplasmin. Using immobilized antibodies toward extracellular superoxide dismutase and ceruloplasmin, no antigenic cross-reactivity between the two proteins could be detected.  相似文献   

7.
The scavenging of superoxide radical by manganous complexes: in vitro   总被引:22,自引:0,他引:22  
Dialyzable manganese has been shown to be present in millimolar concentrations within cells of Lactobacillus plantarum and related lactic acid bacteria. This unusual accumulation of Mn appears to serve the same function as Superoxide dismutase (SOD), conferring hyperbaric oxygen and Superoxide tolerance on these SOD-free organisms. The form of the Mn in the lactic acid bacteria and the mechanisms whereby it protects the cell from oxygen damage are unknown. This report examines the mechanisms by which Mn catalytically scavenges O2?, both in the xanthine oxidase/cytochrome c SOD assay and in a number of in vitro systems relevant to the in vivo situation. In all the reaction mixtures examined, Mn(II) is first oxidized by O2? to Mn(III), and H2O2 is formed. In pyrophosphate buffer the Mn(III) thus formed is re-reduced to Mn(II) by a second O2?, making the reaction a true metal-catalyzed dismutation like that catalyzed by SOD. Alternatively, if the reaction takes place in orthophosphate or a number of other buffers, the Mn(III) is preferentially reduced largely by reductants other than O2?, such as thiols, urate, hydroquinone, or H2O2. H2O2, a common product of the lactic acid bacteria, reacted rapidly with Mn(III) to form O2, apparently without intermediate O2 release. Free hexaquo Mn(II) ions were shown by electron spin resonance spectroscopy and activity assays in noncomplexing buffers to be poorly reactive with O2?. In contrast, Mn(II) formed complexes having a high catalytic activity in scavenging O2? with a number of organic acids, including malate, pyruvate, propionate, succinate, and lactate, with the Mn-lactate complex showing the greatest activity.  相似文献   

8.
Xanthophyll carotenoids of the C40 series, which includes commercially important compounds such as lutein, zeaxanthin, and astaxanthin, have poor aqueous solubility in the native state. Hawaii Biotech, Inc. (HBI) and others have shown that the aqueous dispersibility of derivatized carotenoids can be increased by varying the chemical structure of the esterified moieties. In the current study, the published series of novel, highly water-dispersible C40 carotenoid derivatives has been extended to include (3R,3'R,6'R)-lutein (beta,epsilon-carotene-3,3'-diol) derivatives. Two novel derivatives were synthesized by esterification with inorganic phosphate and succinic acid, respectively, and subsequently converted to the sodium salts. Red-orange, clear, aqueous suspensions were obtained after addition of these novel derivatives to USP-purified water. Aqueous dispersibility of the disuccinate sodium salt of lutein was 2.85 mg/mL; the diphosphate salt demonstrated a >10-fold increase in dispersibility at 29.27 mg/mL. As reported previously, these aqueous suspensions were obtained without the addition of heat, detergents, co-solvents, or other additives. The direct aqueous superoxide scavenging abilities of these novel derivatives were subsequently evaluated by electron paramagnetic resonance (EPR) spectroscopy in a well-characterized in vitro isolated human neutrophil assay. The novel derivatives were nearly identical aqueous-phase scavengers, demonstrating dose-dependent suppression of the superoxide anion signal (as detected by spin-trap adducts of DEPMPO) in the millimolar range. These lutein-based soft drugs will likely find utility in those commercial and clinical applications for which aqueous-phase singlet oxygen quenching and direct radical scavenging may be required.  相似文献   

9.
Microbial transformation of xanthohumol   总被引:1,自引:0,他引:1  
Microbial transformation of xanthohumol using the culture broth of Pichia membranifaciens afforded three metabolites, (E)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":4',3']-2', 4-dihydroxy-6'-methoxychalcone, (2S)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":7,8]-4'-hydroxy-5-methoxyflavanone and (E)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":2',3']-4'-hydroxy-5-methoxychalcone.  相似文献   

10.
Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.  相似文献   

11.
Superoxide scavenging activity (SSA) of recently synthesized isonicotinoylhydrazones, analogs of the clinically used anti-tuberculosis drug isoniazid (INH), was investigated using xanthine/xanthine oxidase system to generate the superoxide anion. The isonicotinoylhydrazones exhibited well expressed SSA, whereas INH did not show any SSA. All of the isonicotinoylhydrazones had a tuberculostatic activity when tested with the standard strain of Mycobacterium tuberculosis H37Rv and some of them had a higher tuberculostatic activity than INH. A lower acute toxicity was also observed compared to INH. Moreover, a correlation was observed between LD50 and SSA for the isonicotinoylhydrazones studied. An explanation is suggested for the higher tuberculostatic activity and lower acute toxicity of some of the isonicotinoylhydrazones as compared to that of INH. A new route to less toxic derivatives of INH with potential tuberculostatic activity is proposed.  相似文献   

12.
A series of p-alkylaminophenols including 3, p-butylaminophenol; 4, p-hexylaminophenol; 5, p-octylaminophenol; and 6, N-(p-methoxybenzyl)aminophenol were synthesized based on the structure of fenretinide, N-(4-hydroxyphenyl)retinamide (1). This latter agent is a synthetic amide of all-trans-retinoic acid (RA), which is a cancer chemopreventive and antiproliferative agent. It was found that elongation of the alkyl chain length in these compounds increased antioxidative activity and inhibition of lipid peroxidation. These findings led us to investigate whether antiproliferative activity against cancer cells was effected by the length of alkyl chains linked to the aminophenol residue. All p-alkylaminophenols inhibited growth of HL60 and HL60R cells in a dose-dependent manners. The HL60R line is a resistant clone against RA. Growth of various cancer cell lines (HL60, HL60R, MCF-7, MCF-7/Adr(R), HepG2, and DU-145) was suppressed by p-alkylaminophenols in a fashion dependent on the aminophenol alkyl chain length (5>4>3>p-methylaminophenol (2)), with 5 being the most potent inhibitor of cell growth against HL60R, MCF-7/Adr(R), and DU-145 cells among p-alkylaminophenols tested, including 1. In particular, with the exception of compound 2, antiproliferative activity against DU-145 cells by these p-alkylaminophenols was greater than by 1. In HL60 cells, growth inhibition was associated with apoptosis. On the other hand, elongation of the alkyl chain length reduced superoxide trapping capability (2>3>4>5) in contrast to the effects on inhibition of lipid peroxidation. These results indicate that anticancer activity of p-alkylaminophenols correlated with the inhibitory activity of lipid peroxidation, but not with the superoxide scavenging activity.  相似文献   

13.
14.
It was studied if the ability of aqueous garlic extracts to scavenge superoxide anion (O(2)(*-)), hydrogen peroxide (H(2)O(2)), and hydroxyl radical (OH(*)) is altered in the following aqueous preparations: (a) extracts of boiled garlic cloves (BG), (b) extracts of microwave-treated garlic cloves (MG), and (c) extracts of pickled garlic (PG), and heated extracts of (a) garlic powder (HGP) and (b) raw garlic (HRG). The data were compared with the unheated raw garlic (RG) or with the unheated garlic powder (GP). Extracts of GP and RG scavenged O(2)(*-), H(2)O(2), and OH(*) in a concentration-dependent way. The reactive oxygen species scavenging capacity was not decreased in the aqueous garlic extracts except in MG and HRG (for O(2)(*-)) and in HGP and PG (for H(2)O(2)). The heating before or after garlic cutting was unable to eliminate the capacity of the extracts to scavenge H(2)O(2), O(2)(*-), and OH(*).  相似文献   

15.
A screening test on 29 microorganisms for transformation of xanthohumol led to the selection of twelve fungal strains. One of them, Beauveria bassiana AM278, converted xanthohumol into a glucosylated derivative. This product was identified as xanthohumol 4'-O-beta-D-4'-methoxyglucopyranoside.  相似文献   

16.
《Plant science》1987,50(2):105-109
Levels of chloroplast antioxidants and enzymes that scavenge oxygen racidals were followed in the leaves of pea plants (Pisum sativum L. cv. Meteor) grown under glasshouse conditions between April 1984 and May 1985. While little variation in pigment levels or superoxide dismutase activity was detected during this period, plants grown in early summer (May–June) contained appreciably higher levels of ascorbate, ascorbate peroxidase and glutathione reductase than plants grown in winter (Dec–Jan.). The role of light intensity in regulating levels of chloroplast antioxidants was examined further using pea plants grown in a constant environment chamber under 100 or 400 μmol m−2 s −1 photon flux density. Chloroplasts isolated from plants grown at the higher light intensity contained significantly higher levels of ascorbate, ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase. These data suggest that light intensity may have an important influence on the level and activity of chloroplast antioxidants and oxygen radical scavenger enzymes.  相似文献   

17.
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.  相似文献   

18.
Three Cu,Zn superoxide dismutase (SOD-1)-deficient Saccharomyces cerevisiae mutants do not grow in 100% O2 in rich medium and require Met and Lys when grown in air (Bilinski, T., Krawiec, Z., Liczmanski, A., and Litwinska, J. (1985) Biochem. Biophys. Res. Commun. 130, 533-539). We show herein that medium manganese (II) accumulated by the mutants rescues these O2-sensitive phenotypes; 2 mM medium Mn2+ represented the threshold required for cell growth. The accumulation of Mn2+ was not oxygen-inducible since mutants grown aerobically and anaerobically accumulated the same amount of Mn2+. Mn2+ accumulation is not unique to these mutants since wild type accumulated almost twice as much Mn2+ as did mutant. ESR spectra of the cell extracts and whole cells loaded with Mn2+ were typical of free Mn(II) ion. These spectra could not account quantitatively for the total cellular Mn2+, however. A screen for soluble antioxidant activities in the Mn2+-supplemented cells detected O2- (superoxide) scavenging activity, with no change in catalase or peroxidase activities. This O2- scavenging activity was CN- and heat-resistant. No achromatic bands were revealed in nondenaturing gels of Mn2+- containing cell extracts stained for O2- scavenging activity. The Mn2+-dependent O2- scavenging activity in the cell extracts was quenched by EDTA and dialyzable. More than 60% of both the intracellular Mn2+ and the O2- scavenging activity was removed by 2-h dialysis. Dialyzed cells were not viable in air unless resupplemented with either Met or Mn2+. Although Mn2+ supported the aerobic growth of these mutants, excess Mn2+, which correlated with an elevated O2- scavenging activity, was toxic to both mutant and wild type. The results indicate that free or loosely bound Mn2+ ion protects the mutants against oxygen stress by providing an intracellular, presumably cytosolic, O2- scavenging activity which replaces the absent SOD-1.  相似文献   

19.
The tetracycline family antibiotics are widely used as human and veterinary treatments. The drugs are effective as antibiotics and also show antimicrobial and non‐microbial action. However, the antioxidant properties of tetracyclines have not been characterized in aprotic media. To better understand their biological functions, the in vitro superoxide anion radical () scavenging activities of tetracycline, chlortetracycline, oxytetracycline, doxycycline and methacycline were characterized, along with a very efficient scavenger, tiron, in dimethyl sulphoxide (DMSO), using ultra‐weak chemiluminescence (CL). We found that tetracycline, chlortetracycline and doxycycline efficiently inhibited CL from the ‐generating system at concentration levels of 0.02–1.0 mmol/L. Methacycline and oxytetracycline were the scavengers at concentration levels of 0.01–0.1 mmol/L, whereas when their concentration was lowered the drugs were capable of generating , leading to CL enhancement. For all the data obtained in this study, the scavenging activity for the compounds tested decreased in the following order: tetracycline > doxycycline > chlortetracycline > tiron methacycline > oxytetracycline. These results indicate that the tetracycline drugs directly alter redox chemistry in aprotic media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants. The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase over-expressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号