首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pannexins (Panx) are a class of integral membrane proteins that have been proposed to exhibit characteristics similar to those of connexin family members. In this study, we utilized Cx43-positive BICR-M1Rk cells to stably express Panx1, Panx3, or Panx1-green fluorescent protein (GFP) to assess their trafficking, cell surface dynamics, and interplay with the cytoskeletal network. Expression of a Sar1 dominant negative mutant revealed that endoplasmic reticulum to Golgi transport of Panx1 and Panx3 was mediated via COPII-dependent vesicles. Distinct from Cx43-GFP, fluorescence recovery after photobleaching studies revealed that both Panx1-GFP and Panx3-GFP remained highly mobile at the cell surface. Unlike Cx43, Panx1-GFP exhibited no detectable interrelationship with microtubules. Conversely, cytochalasin B-induced disruption of microfilaments caused a severe loss of cell surface Panx1-GFP, a reduction in the recoverable fraction of Panx1-GFP that remained at the cell surface, and a decrease in Panx1-GFP vesicular transport. Furthermore, co-immunoprecipitation and co-sedimentation assays revealed actin as a novel binding partner of Panx1. Collectively, we conclude that although Panx1 and Panx3 share a common endoplasmic reticulum to Golgi secretory pathway to Cx43, their ultimate cell surface residency appears to be independent of cell contacts and the need for intact microtubules. Importantly, Panx1 has an interaction with actin microfilaments that regulates its cell surface localization and mobility.  相似文献   

2.
Our previous study shows that caveolin-1 colocalizes and interacts with ATP-binding cassette transporter A1 (ABCA1), which is intimately involved in cellular cholesterol efflux. In this study, we further clarified the region of caveolin-1 that interacts with ABCA1. We also examined the interaction between mutant caveolin-1 and ABCA1 in HDL-mediated cholesterol efflux. We constructed a panel of mutant caveolin-1 proteins and co-transfected them into rat aortic endothelial and human embryonic kidney 293 (HEK293) cells. The co-immunoprecipitation shows that mutant oligomerization domain of caveolin-1, caveolin-1Δ62–100, is required for the interaction of caveolin-1 with ABCA1. Caveolin-1Δ62–100 did not colocalize with ABCA1 in the cholesterol-loaded cells after HDL incubation as observed by immunofluorescence confocal microscopy. Concomitantly, caveolin-1Δ62–100 suppressed HDL-mediated cholesterol efflux. The results suggest that the region of caveolin-1 between amino acids 62 and 100 is an oligomerization domain as well as an attachment site for ABCA1 interaction that regulates HDL-mediated cholesterol efflux.  相似文献   

3.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

4.
Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand–receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.  相似文献   

5.
Kang YS  Kim W  Huh YH  Bae J  Kim JS  Song WK 《PloS one》2011,6(5):e20125

Background

Endocytosis controls localization-specific signal transduction via epidermal growth factor receptor (EGFR), as well as downregulation of that receptor. Extracellular matrix (ECM)-integrin coupling induces formation of macromolecular complexes that include EGFR, integrin, Src kinase and p130Cas, resulting in EGFR activation. In addition, cell adhesion to ECM increases EGFR localization at the cell surface and reduces EGFR internalization. The molecular mechanisms involved are not yet well understood.

Methodology/Principal Findings

We investigated the molecular mechanism by which p130Cas affects the endocytic regulation of EGFR. Biochemical quantification revealed that cell adhesion to fibronectin (FN) increases total EGFR levels and its phosphorylation, and that p130Cas is required for this process. Measurements of Texas Red-labeled EGF uptake and cell surface EGFR revealed that p130Cas overexpression reduces EGF-induced EGFR internalization, while p130Cas depletion enhances it. In addition, both FN-mediated cell adhesion and p130Cas overexpression reduce EGF-stimulated dynamin phosphorylation, which is necessary for EGF-induced EGFR internalization. Coimmunoprecipitation and GST pull-down assays confirmed the interaction between p130Cas and dynamin. Moreover, a SH3-domain-deleted form of p130Cas, which shows diminished binding to dynamin, inhibits dynamin phosphorylation and EGF uptake less effectively than wild-type p130Cas.

Conclusions/Significance

Our results show that p130Cas plays an inhibitory role in EGFR internalization via its interaction with dynamin. Given that the EGFR internalization process determines signaling density and specificity in the EGFR pathway, these findings suggest that the interaction between p130Cas and dynamin may regulate EGFR trafficking and signaling in the same manner as other endocytic regulatory proteins related to EGFR endocytosis.  相似文献   

6.
The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of the endocytic machinery suggests that cortactin may participate in one or several endocytic processes. Therefore, the goal of this study was to test whether cortactin associates with clathrin-coated pits and participates in receptor-mediated endocytosis. Morphological experiments with either anti-cortactin antibodies or expressed red fluorescence protein-tagged cortactin revealed a striking colocalization of cortactin and clathrin puncta at the ventral plasma membrane. Consistent with these observations, cells microinjected with these antibodies exhibited a marked decrease in the uptake of labeled transferrin and low-density lipoprotein while internalization of the fluid marker dextran was unchanged. Cells expressing the cortactin Src homology three domain also exhibited markedly reduced endocytosis. These findings suggest that cortactin is an important component of the receptor-mediated endocytic machinery, where, together with actin and dynamin, it regulates the scission of clathrin pits from the plasma membrane. Thus, cortactin provides a direct link between the dynamic actin cytoskeleton and the membrane pinchase dynamin that supports vesicle formation during receptor-mediated endocytosis.  相似文献   

7.
Pore positioning     
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target these proteins for future therapeutic use. Here we review the basics of Panx function and localization, and then analyze the recent advances in knowledge regarding Panx trafficking. We examine several intrinsic features of Panxs including specific post-translational modifications, the divergent C-termini, and oligomerization, all of which contribute to Panx anterograde transport pathways. Further, we examine the potential influence of extrinsic factors, such as protein-protein interactions, on Panx trafficking. Finally, we highlight what is currently known with respect to Panx internalization and retrograde transport, and present new data illustrating Panx1 internalization following an activating stimulus.  相似文献   

8.
beta-Arrestins can act as adapter molecules, coupling G-protein-coupled receptors to proteins involved in mitogenic as well as endocytic pathways. We have previously identified c-SRC as a molecule that is rapidly recruited to the beta2-adrenergic receptor in a beta-arrestin1-dependent manner. Recruitment of c-SRC to the receptor appears to be involved in pathways leading to receptor internalization and mitogen-activated protein kinase activation. This recruitment of c-SRC to the receptor involves an interaction between the amino-terminal proline-rich region of beta-arrestin1 and the Src homology 3 (SH3) domain of c-SRC, but deletion of the proline-rich domain does not totally ablate the interaction. We have found that a major interaction also exists between beta-arrestin1 and the catalytic or kinase domain (SH1) of c-SRC. We therefore hypothesized that a catalytically inactive mutant of the isolated catalytic subunit, SH1(kinase dead) (SH1(KD)), would specifically block those cellular actions of c-SRC that are mediated by beta-arrestin1 recruitment to the G-protein-coupled receptor. In contrast, the majority of cellular phosphorylations catalyzed by c-SRC, which do not involve interaction with the SH1 domain, would be predicted to be unaffected. The SH1(KD) mutant did indeed block beta2-adrenergic receptor internalization and receptor-stimulated tyrosine phosphorylation of dynamin, actions previously shown to be c-SRC-dependent. In contrast, SAM-68 and whole cell tyrosine phosphorylation by c-SRC was unaffected, indicating that the SH1(KD) mutant did not inhibit c-SRC tyrosine kinase activity in general. These results not only clarify the nature of the beta-arrestin1/c-SRC interaction but also implicate beta-arrestin1 as an important mediator of receptor internalization by recruiting tyrosine kinase activity to the cell surface to phosphorylate key endocytic intermediates, such as dynamin.  相似文献   

9.
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target these proteins for future therapeutic use. Here we review the basics of Panx function and localization, and then analyze the recent advances in knowledge regarding Panx trafficking. We examine several intrinsic features of Panxs including specific post-translational modifications, the divergent C-termini, and oligomerization, all of which contribute to Panx anterograde transport pathways. Further, we examine the potential influence of extrinsic factors, such as protein-protein interactions, on Panx trafficking. Finally, we highlight what is currently known with respect to Panx internalization and retrograde transport, and present new data illustrating Panx1 internalization following an activating stimulus.  相似文献   

10.
The chloride channel, ClC-2 is expressed ubiquitously and participates in multiple physiological processes. In particular, ClC-2 has been implicated in the regulation of neuronal chloride ion homeostasis and mutations in ClC-2 are associated with idiopathic generalized epilepsy. Despite the physiological and pathophysiological significance of this channel, its regulation remains incompletely understood. The functional expression of ClC-2 at the cell surface has been shown to be enhanced by depletion of cellular ATP, implicating its possible role in cellular energy sensing. In the present study, biochemical assays of cell surface expression suggest that this gain of function reflects, in part, an increase in channel number due to the reduction in ClC-2 internalization by endocytosis. Cell surface expression of the disease-causing mutant: G715E, thought to lack wild-type nucleotide binding affinity, is similarly affected, suggesting that ATP-depletion modifies the function of proteins in the endocytic pathway rather than ClC-2 directly. Using a combination of immunofluorescence and biochemical studies, we confirmed that ClC-2 is internalized via dynamin-dependent endocytosis and that the change in surface expression evoked by ATP depletion is partially mimicked by inhibition of dynamin function using a dynamin dominant-negative mutant (DynK44A). Furthermore, trafficking via the early endosomal compartment occurs in part through rab5-associated vesicles and recycling of ClC-2 to the cell surface occurs through a rab11 dependent pathway. In summary, we have determined that the internalization of ClC-2 by endocytosis is inhibited by metabolic stress, highlighting the importance for understanding the molecular mechanisms mediating the endosomal trafficking of this channel.  相似文献   

11.
The pannexin family of mammalian proteins, composed of Panx1, Panx2, and Panx3, has been postulated to be a new class of single-membrane channels with functional similarities to connexin gap junction proteins. In this study, immunolabeling and coimmunoprecipitation assays revealed that Panx1 can interact with Panx2 and to a lesser extent, with Panx3 in a glycosylation-dependent manner. Panx2 strongly interacts with the core and high-mannose species of Panx1 but not with Panx3. Biotinylation and dye uptake assays indicated that all three pannexins, as well as the N-glycosylation-defective mutants of Panx1 and Panx3, can traffic to the cell surface and form functional single-membrane channels. Interestingly, Panx2, which is also a glycoprotein and seems to only be glycosylated to a high-mannose form, is more abundant in intracellular compartments, except when coexpressed with Panx1, when its cell surface distribution increases by twofold. Functional assays indicated that the combination of Panx1 and Panx2 results in compromised channel function, whereas coexpressing Panx1 and Panx3 does not affect the incidence of dye uptake in 293T cells. Collectively, these results reveal that the functional state and cellular distribution of mouse pannexins are regulated by their glycosylation status and interactions among pannexin family members.  相似文献   

12.
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.  相似文献   

13.
Regarding the molecular mechanism of dynamin in receptor-mediated endocytosis, GTPase activity of dynamin has been thought to have a critical role in endocytic vesicle internalization. However, a recent report suggested that GTP-binding to dynamin itself activates the dynamin to recruit molecular machinery necessary for endocytosis. In this study, to investigate the role of GTP binding to dynamin II, we generated two mutant dynamin II constructs: G38V and K44E. G38V, its GTP binding site might be mainly occupied by GTP caused by reduced GTPase activity, and K44E mutant, its GTP binding site might be vacant, caused by its decreased affinity for GTP and GDP. From the analysis of the ratio of GTP vs GDP bound to dynamin, we confirmed these properties. To test the effect of these mutant dynamins on endocytosis, we performed flow cytometry and confocal immunofluorescence analysis and found that these two mutants have inhibitory effect on transferrin-induced endocytosis. Whereas fluorescent transferrin was completely internalized in wild-type (WT) dynamin II expressing cells, no intracellular accumulation of fluorescent transferrin was found in the cells overexpressing K44E and G38V mutant. Interestingly, the amount of GTP bound to K44E was increased when endocytosis was induced than that bound to WT. The present results suggested that the GTPase activity of dynamin II is required for formation of endocytic vesicle and GTP-binding to dynamin II per se is not sufficient for stimulating endocytosis.  相似文献   

14.
Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement.  相似文献   

15.
The human prostacyclin receptor (hIP) undergoes rapid agonist-induced internalization by largely unknown mechanism(s). Herein the involvement of Rab5 in regulating cicaprost-induced internalization of the hIP expressed in human embryonic kidney 293 cells was investigated. Over-expression of Rab5a significantly increased agonist-induced hIP internalization. Additionally, the hIP co-localized to Rab5a-containing endocytic vesicles in response to cicaprost stimulation and there was a coincident net translocation of Rab5 from the cytosol/soluble fraction of the cell. Co-immunoprecipitation studies confirmed a direct physical interaction between the hIP and Rab5a that was augmented by cicaprost. Whilst the dominant negative Rab5a(S34N) did not show decreased interaction with the hIP or fully impair internalization, it prevented hIP sorting to endocytic vesicles. Moreover, the GTPase deficient Rab5a(Q79L) significantly increased internalization and co-localized with the hIP in enlarged endocytic vesicles. While deletion of the carboxyl terminal (C)-tail domain of the hIP did not inhibit agonist-induced internalization, co-localization or co-immunoprecipitation with Rab5a per se, receptor trafficking was altered suggesting that it contains structural determinant(s) for hIP sorting post Rab5-mediated endocytosis. Taken together, data herein and in endothelial EA.hy 926 cells demonstrate a direct role for Rab5a in agonist-internalization and trafficking of the hIP and increases knowledge of the factors regulating prostacyclin signaling.  相似文献   

16.
Clathrin-mediated endocytosis is a major cellular pathway for internalization of proteins and lipids and for recycling of synaptic vesicles. The GTPase dynamin plays a key role in this process, and the proline-rich domain of dynamin participates in various protein-protein interactions to ensure a proper coordination of endocytic processes. Although dynamin is not directly associated with actin, several dynamin-binding proteins can interact with actin or with proteins that regulate actin assembly, thereby coordinately regulating actin assembly and trafficking events. This article summarizes dynamin interactions with various Src homology 3-containing proteins, many of which are actin-binding proteins. It also discusses the recently identified two new dynamin binding proteins, SH3 protein interacting with Nck, 90 kDa/Wiskott-Aldrich syndrome protein interacting with SH3 protein (SPIN90/WISH) and sorting nexin 9, and outlines their potential role as a link between endocytosis and actin dynamics.  相似文献   

17.
In human trophoblastic cells, a correlation between early endosomal trafficking of HIV-1 and virus infection was previously documented. However, if HIV-1 is massively internalized in these cells, the endocytic pathway(s) responsible for viral uptake is still undefined. Here we address this vital question. Amongst all the putative endocytic pathways present in polarized trophoblastic cells, we demonstrate that HIV-1 infection of these cells is independent of clathrin-mediated endocytosis and macropinocytosis. Importantly, treatment with the cholesterol-sequestering drug filipin severely impairs virus internalization, whereas the cholesterol-depleting compound methyl-beta-cyclodextrin has no impact on this pathway. Moreover, viral internalization is unaffected by overexpression of a mutant dynamin 2 or treatment with a kinase or tyrosine phosphatase inhibitor. Thus, HIV-1 infection in polarized trophoblastic cells occurs primarily via a clathrin, caveolae, and dynamin-independent pathway requiring free cholesterol. Notably, even though HIV-1 did not initially co-localize with transferrin, some virions migrate at later time points to transferrin-enriched endosomes, suggesting an unusual transit from the non-classical pathway to early endosomes. Finally, virus internalization in these cells does not involve the participation of microtubules but relies partly on actin filaments. Collectively these findings provide unprecedented information on the route of HIV-1 internalization in polarized human trophoblasts.  相似文献   

18.
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.  相似文献   

19.
Neural Wiskott-Aldrich syndrome protein (N-WASP) has been implicated in endocytosis; however, little is known about how it interacts functionally with the endocytic machinery. Sucrose gradient fractionation experiments and immunofluorescence studies with anti-N-WASP antibody revealed that N-WASP is recruited together with clathrin and dynamin, which play essential roles in clathrin-mediated endocytosis, to lipid rafts in an epidermal growth factor (EGF)-dependent manner. Endophilin A (EA) binds to dynamin and plays an essential role in the fission step of clathrin-mediated endocytosis. In the present study, we show that the Src homology 3 (SH3) domain of EA associates with the proline-rich domain of N-WASP and dynamin in vitro. Co-immunoprecipitation assays with anti-N-WASP antibody revealed that EGF induces association of N-WASP with EA. In addition, EA enhances N-WASP-induced actin-related protein 2/3 (Arp2/3) complex activation in vitro. Immunofluorescence studies revealed that actin accumulates at sites where N-WASP and EA are co-localized after EGF stimulation. Furthermore, studies of overexpression of the SH3 domain of EA indicate that EA may regulate EGF-induced recruitment of N-WASP to lipid rafts. These results suggest that, upon EGF stimulation, N-WASP interacts with EA through its proline-rich domain to induce the fission step of clathrin-mediated endocytosis.  相似文献   

20.
The neurotensin receptor subtype 1 (NTS1) is a G-protein-coupled receptor (GPCR) mediating a large number of central and peripheral effects of neurotensin. Upon stimulation, NTS1 is rapidly internalized and targeted to lysosomes. This process depends on the interaction of the phosphorylated receptor with β–arrestin. Little is known about other accessory endocytic proteins potentially involved. Here, we investigated the involvement of dynamin, amphiphysin, and intersectin in the internalization of NTS1 receptor-ligand complexes in transfected COS-7 and HEK 293 cells, by using the transferrin receptor as an internal control for the constitutive endocytic pathway. We found that NTS1 endocytosis was not only arrestin–dependent, but also dynamin–dependent in both COS-7 and HEK 293 cells, whereas internalization of the transferrin receptor was independent of arrestin but required dynamin. Overexpression of the SH3 domain of amphiphysin II had no effect on receptor internalization in either cell type. By contrast, overexpression of full-length intersectin or of its SH3 domain (but not of its EH domain) inhibited NTS1 internalization in COS-7 but not in HEK 293 cells. This difference between COS-7 and HEK 293 cells was not attributable to differences in endogenous intersectin levels between the two cell lines. Indeed, the same constructs inhibited transferrin endocytosis equally well in COS-7 and HEK 293 cells. However, immunogold electron microscopy revealed that internalized NTS1 receptors were associated with clathrin-coated pits in COS-7 cells but with smooth vesicles in HEK 293 cells, suggesting that NTS1 internalization proceeds via different endocytic pathways in these two cell types. This work was supported by grants to A.B. from CIHR and FRSQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号