首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Two stress imposing systems were used: a rapid stress developed by allowing excised leaves to loose water by transpiration, and a slow stress developed by withholding watering of potted plants. Carboxylating enzymes reacted differently on both types of stress. Rapid stress increased ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activation, but both activities (initial and total) showed little variation with stress. Under slow stress the activation did not change, although both activities decreased much under stress. Phosphoenolpyruvate carboxylase (PEPC) showed a deep decrease of activity under rapid stress, nevertheless, a certain recovery was found under extreme stress. On the other hand, under slow stress the activity of PEPC showed a linear increase with decreasing relative water content. The ratio between physiological and maximal activity increased slightly under both types of stress. The activity of malic enzyme did not change under rapid stress, and decreased linearly under slow stress.  相似文献   

2.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2002,40(4):547-552
A field experiment was conducted to investigate the changes in chlorophyll (Chl) and nitrogen (N) contents, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) contents and PEPC activity, and the photon-saturated net photosynthetic rate (P Nsat), and their relationships with leaf senescence in two maize hybrids with different senescent appearance. One stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55) hybrid were used in this study, and we found that Chl and N contents and the P Nsat in individual leaves of P3845 were greater than those in corresponding leaves of Hokkou 55 at the successive growth stages. In addition, larger contents of RuBPCO and PEPC, and a greater activity of PEPC were observed in P3845. Due to the lower rates of decrease of Chl, RuBPCO, and PEPC amounts per unit of N, and the lower net C translocation rate per unit of N in the stay-green hybrid, leaf senescence was delayed in comparison to the earlier senescent hybrid.  相似文献   

3.
Degl'Innocenti  E.  Guidi  L.  Soldatini  G.F. 《Photosynthetica》2002,40(1):121-126
The effects of long-term exposure to ozone (O3, 60 mm3 m-3 for 5 h d-1) on some Calvin cycle enzymes, in particular those modulated by the thioredoxin system, were studied in two poplar clones. These clones differ in sensitivity to O3. In the I-214 clone, the first effects from O3 treatment were seen after 40 d of fumigation, while the Eridano clone showed visible symptoms of damage after only 15 d of the treatment. Specific activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39) diminished in both the clones, while specific activity of phosphoenolpyruvate carboxylase (E.C. 4.1.1.31) increased. Exposure to O3 also caused a reduction in the specific activity of ribulose-1,5-bisphosphate kinase (E.C. 2.7.1.19) in both clones. At the end of the exposure to O3, specific activity of glyceraldehyde 3-phosphate dehydrogenase (E.C. 1.2.1.13) increased in I-214 and remained similar to the control in Eridano, whereas specific activity of fructose-1,6-bisphosphate phosphatase (E.C. 3.1.3.11) was higher in Eridano and similar to the control in I-214.  相似文献   

4.
Developmental regulation of photosynthate distribution in leaves of rice   总被引:1,自引:0,他引:1  
mRNA expression patterns of genes for metabolic key enzymes sucrose phosphate synthase (SPS), phosphoenolpyruvate carboxylase (PEPC), pyruvate kinase, ribulose 1,5-bisphosphate carboxylase/oxygenase, glutamine synthetase 1, and glutamine synthetase 2 were investigated in leaves of rice plants grown at two nitrogen (N) supplies (N0.5, N3.0). The relative gene expression patterns were similar in all leaves except for 9th leaf, in which mRNA levels were generally depressed. Though increased N supply prolonged the expression period of each mRNA, it did not affect the relative expression intensity of any mRNA in a given leaf. SPS Vmax, SPS limiting and PEPC activities, and carbon flow were examined. The ratio between PEPC activity and SPS Vmax was higher in leaves developed at the vegetative growth stage (vegetative leaves: 5th and 7th leaves) than in leaves developed after the ear primordia formation stage (reproductive leaves: 9th and flag leaves). PEPC activity and SPS Vmax decreased with declining leaf N content. After using 14CO2 the 14C photosynthate distribution in the amino acid fraction was higher in vegetative than in reproductive leaves when compared for the same leaf N status. Thus, at high PEPC/SPS activities ratio, more 14C photosynthate was distributed to the amino acid pool, whereas at higher SPS activity more 14C was channelled into the saccharide fraction. Thus, leaf ontogeny was an important factor controlling photosynthate distribution to the N- or C-pool, respectively, regardless of the leaf N status.  相似文献   

5.
Three types of transgenic plants of Solanum tuberosum cvs. Kamyk and Oreb, and Nicotiana tabacum cvs. Maryland Mammoth and Trapezond were selected according to intensity of introduced ipt gene expression and resulting amount of synthesised cytokinins (CKs). In comparison with controls, original transgenic regenerants grown in vitro showed a massive increase of CK contents, in tobacco by 379 % and in potato by 159 % (MAS). Potato grown in soil from tubers of transgenic plants demonstrated a moderate increase (44 %) of CK contents (MOD). Transgenic tobacco grown from seeds in vitro did not show any significant change in CK contents (NOT). Initial (RuBPCi and RuBPOi) and total (RuBPCt) activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and the activity of phosphoenolpyruvate carboxylase (PEPC) were not significantly affected by the transformation in the NOT plants. In the MOD plants, the RuBPCO activities were stimulated by up to 34 % whereas the PEPC activity was decreased by 17 %. On the other hand, all the measured enzyme activities were 32 – 91 % lower in the MAS. Leaf area, fresh and dry masses, and chlorophyll and soluble protein contents also went down with increasing CK amounts in the transformants. Dependence of RuBPCi/RuBPOi and RuBPCt/PEPC ratios on the relative CK amounts in transgenic plants revealed that the individual enzyme activities were not affected uniformly. Endogenous CK contents in the MAS thus apparently exceeded an optimum needed for positive effects on many physiological traits and became a stress factor for such plants.  相似文献   

6.
Harnos  N.  Tuba  Z.  Szente  K. 《Photosynthetica》2002,40(2):293-300
Winter wheat plants were grown in open top chambers either at 365 µmol mol–1 (AC) or at 700 µmol mol–1 (EC) air CO2 concentrations. The photosynthetic response of flag leaves at the beginning of flowering and on four vertical leaf levels at the beginning of grain filling were measured. Net photosynthetic rates (P N) were higher at both developmental phases in plants grown at EC coupled with larger leaf area and photosynthetic pigment contents. The widely accepted Farquhar net photosynthesis model was parameterised and tested using several observed data. After parameterisation the test results corresponded satisfactorily with observed values under several environmental conditions.  相似文献   

7.
Activities of some enzymes related to carbon metabolism were studied in different ecotypes of Rumex nepalensis growing at 1 300, 2 250, and 3 250 m above mean sea level. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, and glutamine synthetase increased with altitude, whereas activities of malate dehydrogenase, NAD-malic enzyme, and citrate synthase did not show a significant difference with change in altitude.  相似文献   

8.
Biao 810S is a chlorina mutant of the thermosensitive genic male sterile (TGMS) rice. We compared photosynthetic characteristics of these two lines. The contents of chlorophylls and carotenoids in Biao 810S were approximately half of those in 810S. However, the net photosynthetic rate (P N) of Biao 810S was higher than that of 810S under high irradiance or low concentration of carbon dioxide, and the photon quantum efficiency was higher than that of 810S. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in Biao 810S was only 69.80 % of that in 810S, but the activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme were 79.50 and 69.06 % higher than those of 810S, respectively, suggesting that the efficiency of photon energy utilization in Biao 810S was enhanced by reduction of thermal dissipation and increase of electron transfer rate to generate sufficient assimilation power for the dark reactions. Consequently, the increased activities of C4 photosynthetic enzymes lead to more effective fixation of CO2 and the synergistic effect of light and dark reactions contributed to the higher P N of Biao 810S.  相似文献   

9.
Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) mol mol-1. Afterwards, plants of the three variants were grown at the same natural CO2 concentration. Plant characteristics were measured just before the transfer (0 days after CO2 treatment, DAT), and at 5 – 8 DAT on the 1st leaf, and at 12 – 22 DAT on the 4th leaf. Decreased or increased CO2 concentrations caused acclimations which persisted after transplantation to natural CO2 concentration. At 5 – 8 DAT, stomatal density, stomatal conductance (gs), CO2 saturated net photosynthetic rate (PNsat0), radiation saturated net photosynthetic rate (PNsat1), and carboxylation efficiency () were higher in -CO2 plants and lower in +CO2 plants than in C plants. As compared with C plants, the photochemical efficiency () was lower in -CO2 and higher in -CO2 plants, however, chlorophyll (Chl) a, Chl b, Chl a–b and carotenoid contents were lower in both -CO2 and +CO2 plants. On the 4th leaf, which emerged on plant after finishing CO2 treatments, at 12 – 22 DAT, no differences in stomatal density and g, between treatments were observed. In -CO2 plants, pigment content and PNsat0 were higher, was lower, and PNsat1 and were not different from C plants. In contrast, in +CO2 plants, pigment content, PNsat1 and were lower, and PNsat0 and were unchanged. Leaf area, dry mass, and tiller development increased in +CO2 plants and decreased in -CO2 plants. In the interval between 8 and 22 DAT, lower net assimilation rate in +CO2 than in -CO2 plants was observed.  相似文献   

10.
Elevated (700 μmol mol−1) and ambient (350 μmol mol−1) CO2 effects on total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, photosynthesis (A), and photoinhibition during 6 d at low temperature were measured on wild type (WT), and rbcS antisense DNA mutants (T3) of tobacco (Nicotiana tabacum L.) with 60% of WT total Rubisco activity (Rodermel et al. (1988) Cell 55: 673–681). Prior to the low temperature treatment, A and quantum yield of PSII photochemistry in the light adapted state (φPSII) were significantly lower in T3 compared to WT at each CO2 level. At this time, total nonphotochemical quenching (NPQTotal) levels were near maximal (0.75–0.85) in T3 compared to WT (0.39–0.50). A was stimulated by 107% in T3 and 25% in WT at elevated compared to ambient CO2. Pre-treatment acclimation to elevated CO2 occurred in WT resulting in lower Rubisco activity per unit leaf area and reduced stimulation of A. At low temperature, A of WT was similar at elevated and ambient CO2 while stimulation of A by elevated CO2 in T3 was reduced. In addition, at low temperature we measured significantly lower photochemical quenching at elevated CO2 compared to ambient CO2 in both genotypes. NPQTotal was similar (0.80–0.85) among all treatments. However, a larger proportion of NPQTotal was composed of qI,d, the damage subcomponent of the more slowly relaxing NPQ component, qI, in both genotypes at elevated compared to ambient CO2. Greater qI,d, at elevated CO2 during and after the low temperature treatment was not related to pre-treatment differences in total Rubisco activity.  相似文献   

11.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.Abbreviations CA1P 2-carboxyarabinitol-1-phosphate - Pipa intercellular, ambient partial pressure of CO2 - PGA 3-phospho-glycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SSU small subunit of Rubisco  相似文献   

12.
Summary Heterotrophic plantlets obtained by in vitro propagation are biochemically different compared to autotrophic plantlets. When heterotrophic plantlets are transferred to ex vitro conditions, higher irradiance levels are generally applied. Irradiance levels higher than those used in vitro lead to oxidative stress symptoms, that can be counteracted by CO2 concentrations above normal. We analyzed the stability and activity of Rubisco and leaf-soluble sugars and starch contents in chestnut plantlets transferred from in vitro to ex vitro conditions under four treatments obtained by associating two irradiances of 150 (low light, LL) and 300 (high light, HL) μmolm−2s−1, respectively three and six times in vitro irradiance, with two CO2 levels of 350 (low CO2, LCO2) and 700 (high CO2, HCO2) μll−1. In in vitro plantlets it was possible to immunodetect apparent products of degradation of Rubisco large subunit (LSU). In ex vitro plantlets, these degradation products were no longer dtected except under LL associated with LCO2. The decrease in soluble sugars and starch in plantlets under HL HCO2 gave an indication of a faster acquisition of autotrophic characteristics. However, under the same treatment, a down-regulation of Rubisco activity was observed. From the results taken as a whole, two aspects seem to be confirmed: HL HCO2 is more efficient in inducing an autotrophic behavior in chestnut ex vitro plantlets; actively growing systems as ex vitro plantlets reflect the down-regulation of Rubisco by HCO2 without accumulation of carbohydrates.  相似文献   

13.
BACKGROUND AND AIMS: Influences of rising global CO(2) concentration and temperature on plant growth and ecosystem function have become major concerns, but how photosynthesis changes with CO(2) and temperature in the field is poorly understood. Therefore, studies were made of the effect of elevated CO(2) on temperature dependence of photosynthetic rates in rice (Oryza sativa) grown in a paddy field, in relation to seasons in two years. METHODS: Photosynthetic rates were determined monthly for rice grown under free-air CO(2) enrichment (FACE) compared to the normal atmosphere (570 vs 370 micromol mol(-1)). Temperature dependence of the maximum rate of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and the maximum rate of electron transport (J(max)) were analysed with the Arrhenius equation. The photosynthesis-temperature response was reconstructed to determine the optimal temperature (T(opt)) that maximizes the photosynthetic rate. KEY RESULTS AND CONCLUSIONS: There was both an increase in the absolute value of the light-saturated photosynthetic rate at growth CO(2) (P(growth)) and an increase in T(opt) for P(growth) caused by elevated CO(2) in FACE conditions. Seasonal decrease in P(growth) was associated with a decrease in nitrogen content per unit leaf area (N(area)) and thus in the maximum rate of electron transport (J(max)) and the maximum rate of RuBP carboxylation (V(cmax)). At ambient CO(2), T(opt) increased with increasing growth temperature due mainly to increasing activation energy of V(cmax). At elevated CO(2), T(opt) did not show a clear seasonal trend. Temperature dependence of photosynthesis was changed by seasonal climate and plant nitrogen status, which differed between ambient and elevated CO(2).  相似文献   

14.
A. Brooks  G. D. Farquhar 《Planta》1985,165(3):397-406
Responses of the rate of net CO2 assimilation (A) to the intercellular partial pressure of CO2 (p i ) were measured on intact spinach (Spinacia oleracea L.) leaves at different irradiances. These responses were analysed to find the value of p i at which the rate of photosynthetic CO2 uptake equalled that of photorespiratory CO2 evolution. At this CO2 partial pressure (denoted ), net rate of CO2 assimilation was negative, indicating that there was non-photorespiratory CO2 evolution in the light. Hence was lower than the CO2 compensation point, . Estimates of were obtained at leaf temperatures from 15 to 30°C, and the CO2/O2 specificity of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (E.C. 4.1.1.39) was calculated from these data, taking into account changes in CO2 and O2 solubilities with temperature. The CO2/O2 specificity decreased with increasing temperature. Therefore we concluded that temperature effects on the ratio of photorespiration to photosynthesis were not solely the consequence of differential effects of temperature on the solubilities of CO2 and O2. Our estimates of the CO2/O2 specificity of RuBP carboxylase/oxygenase are compared with in-vitro measurements by other authors. The rate of nonphotorespiratory CO2 evolution in the light (R d ) was obtained from the value of A at . At this low CO2 partial pressure, R d was always less than the rate of CO2 evolution in darkness and appeared to decrease with increasing irradiance. The decline was most marked up to about 100 mol quanta m-2 s-1 and less marked at higher irradiances. At one particular irradiance, however, R d as a proportion of the rate of CO2 evolution in darkness was similar in different leaves and this proportion was unaffected by leaf temperature or by [O2] (ambient and greater). After conditions of high [CO2] and high irradiance for several hours, the rate of CO2 evolution in darkness increased and R d also increased.Abbreviations and symbols A rate of net CO2-assimilation - CO2 compensation point - CO2 compensation point in the absence of R d - p i intercellular partial pressure of CO2 - R d (day respiration) rate of non-photorespiratory CO2 evolution in the light - R n (night respiration) rate of CO2 evolution in darkness - RuBP ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase  相似文献   

15.
Comparative 14CO2 pulse-12CO2 chase studies performed at CO2 compensation ()-versus air-concentrations of CO2 demonstrated a four-to eightfold increase in assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of the C3-C4 intermediate species Panicum milioides Nees ex Trin., P. decipiens Nees ex Trin., Moricandia arvensis (L.) DC., and M. spinosa Pomel at . Specifically, the distribution of 14C in malate and aspartate following a 10-s pulse with 14CO2 increases from 2% to 17% (P. milioides) and 4% to 16% (M. arvensis) when leaves are illuminated at the CO2 compensation concentration (20 l CO2/l, 21% O2) versus air (340 l CO2/l, 21% O2). Chasing recently incorporated 14C for up to 5 min with 12CO2 failed to show any substantial turnover of label in the C4 acids or in carbon-4 of malate. The C4-acid labeling patterns of leaves of the closely related C3 species, P. laxum Sw. and M. moricandioides (Boiss.) Heywood, were found to be relatively unresponsive to changes in pCO2 from air to . These data demonstrate that the C3-C4 intermediate species of Panicum and Moricandia possess an inherently greater capacity for CO2 assimilation via phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) at the CO2 compensation concentration than closely related C3 species. However, even at , CO2 fixation by PEP carboxylase is minor compared to that via ribulosebisphosphate carboxylase (EC 4.1.1.39) and the C3 cycle, and it is, therefore, unlikely to contribute in a major way to the mechanism(s) facilitating reduced photorespiration in the C3-C4 intermediate species of Panicum and Moricandia.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - PEP phosphoenolpyruvate - CO2 compensation concentration - 3PGA 3-phosphoglycerate - SuP sugar monophosphates - SuP2 sugar bisphosphates Published as Paper No. 8249, Journal Series, Nebraska Agricultural Research Division  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号