首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diversity and evolution of hydrogenase systems in rhizobia   总被引:1,自引:0,他引:1  
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.  相似文献   

2.
3.
4.
In this study we have designed degenerate primers after comparative analysis of nifD gene sequences from public databases, and developed a PCR protocol for the amplification of nifD sequences from cyanobacteria. The primers were tested on a variety of nitrogenase-containing and nitrogenase-lacking bacteria. By using this protocol, we amplified nifD sequences from DNA that was isolated from three phototrophic microbial communities. Denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the nifD amplicons showed the presence of distinct groups of diazotrophic cyanobacteria in each of the investigated microbial communities. Phylogenetic trees constructed from the sequences of nifD gene fragments are congruent with those based on ribosomal RNA gene sequences.  相似文献   

5.
Cyanobacteria are important primary producers, and many are able to fix atmospheric nitrogen playing a key role in the marine environment. However, not much is known about the diversity of cyanobacteria in Portuguese marine waters. This paper describes the diversity of 60 strains isolated from benthic habitats in 9 sites (intertidal zones) on the Portuguese South and West coasts. The strains were characterized by a morphological study (light and electron microscopy) and by a molecular characterization (partial 16S rRNA, nifH, nifK, mcyA, mcyE/ndaF, sxtI genes). The morphological analyses revealed 35 morphotypes (15 genera and 16 species) belonging to 4 cyanobacterial Orders/Subsections. The dominant groups among the isolates were the Oscillatoriales. There is a broad congruence between morphological and molecular assignments. The 16S rRNA gene sequences of 9 strains have less than 97% similarity compared to the sequences in the databases, revealing novel cyanobacterial diversity. Phylogenetic analysis, based on partial 16S rRNA gene sequences showed at least 12 clusters. One-third of the isolates are potential N(2)-fixers, as they exhibit heterocysts or the presence of nif genes was demonstrated by PCR. Additionally, no conventional freshwater toxins genes were detected by PCR screening.  相似文献   

6.
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification "microbialite" origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.  相似文献   

7.
Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene.  相似文献   

8.
It is generally accepted that the plastids arose from a cyanobacterial ancestor, but the exact phylogenetic relationships between cyanobacteria and plastids are still controversial. Most studies based on partial 16S rRNA sequences suggested a relatively late origin of plastids within the cyanobacterial divergence. In order to clarify the exact relationship and divergence order of cyanobacteria and plastids, we studied their phylogeny on the basis of nearly complete 16S rRNA gene sequences. The data set comprised 15 strains of cyanobacteria from different morphological groups, 1 prochlorophyte, and plastids belonging to 8 species of plants and 12 species of diverse algae. This set included three cyanobacterial sequences determined in this study. This is the most comprehensive set of complete cyanobacterial and plastidial 16S rRNA sequences used so far. Phylogenetic trees were constructed using neighbor joining and maximum parsimony, and the reliability of the tree topologies was tested by different methods. Our results suggest an early origin of plastids within the cyanobacterial divergence, preceded only by the divergence of two cyanobacterial genera, Gloeobacter and Pseudanabaena.   相似文献   

9.
There are few modern analyses of the cyanobacterial communities in biofilms on external building surfaces. As the classification of cyanobacteria is rapidly changing, we aimed to identify them on historic buildings in Brazil using both established and molecular techniques. In mature biofilms, cyanobacteria of subsections I and II were generally the major biomass; occasionally filamentous genera of the Scytonemataceae, Microchaetaceae and Rivularaceae were dominant. Filamentous organisms of subsections III and IV were more frequently isolated in culture. PCR products using cyanobacteria-specific 16S rDNA primers were sequenced from morphologically identified organisms. Homologies with deposited sequences were generally low. Phylogenetic analysis showed that many isolates were distant from their nearest neighbours, even though they grouped with their appropriate taxa. The majority of cyanobacterial DNA sequences deposited in data banks are aquatic; our results indicate that cyanobacteria from external walls are an ecologically isolated group.  相似文献   

10.
Taxonomy of Cyanobacteria, the oldest phototrophic prokaryotes, is problematic for many years due to their simple morphology, high variability and adaptability to diverse ecological niches. After introduction of the polyphasic approach, which is based on the combination of several criteria (molecular sequencing, morphological and ecological), the whole classification system of these organisms is subject to reorganization. The aim of this study was to evaluate whether the outer membrane efflux protein (OMEP) sequences can be used as a molecular marker for resolving the phylogeny and taxonomic status of closely related cyanobacteria. We have performed phylogenetic analyses based on the amino acid sequences of the OMEP and the DNA sequences of the 16S rRNA gene from 86 cyanobacterial species/strains with completely sequenced genomes. Phylogenetic trees based on the OMEP showed that most of the cyanobacterial species/strains belonging to different genera are clustered in separate clades supported by high bootstrap values. Comparing the OMEP trees with the 16S rDNA tree clearly showed that the OMEP is more suitable marker in resolving phylogenetic relationships within Cyanobacteria at generic and species level.  相似文献   

11.
In lakes, benthic micro-algae and cyanobacteria (periphyton) can contribute significantly to total primary productivity and provide important food sources for benthic invertebrates. Despite recognition of their importance, few studies have explored the diversity of the algal and cyanobacterial composition of periphyton mats in temperate lakes. In this study, we sampled periphyton from three New Zealand lakes: Tikitapu (oligotrophic), ōkāreka (mesotrophic) and Rotoiti (eutrophic). Statistical analysis of morphological data showed a clear delineation in community structure among lakes and highlighted the importance of cyanobacteria. Automated rRNA intergenic spacer analysis (ARISA) and 16S rRNA gene clone libraries were used to investigate cyanobacterial diversity. Despite the close geographic proximity of the lakes, cyanobacterial species differed markedly. The 16S rRNA gene sequence analysis identified eight cyanobacterial OTUs. A comparison with other known cyanobacterial sequences in GenBank showed relatively low similarities (91-97%). Cyanotoxin analysis identified nodularin in all mats from Lake Tikitapu. ndaF gene sequences from these samples had very low (≤ 89%) homology to sequences in other known nodularin producers. To our knowledge, this is the first detection of nodularin in a freshwater environment in the absence of Nodularia. Six cyanobacteria species were isolated from Lake Tikitapu mats. None were found to produce nodularin. Five of the species shared low (< 97%) 16S rRNA gene sequence similarities with other cultured cyanobacteria.  相似文献   

12.
In order to develop a protocol to quantify cyanobacteria and Microcystis simultaneously, the primers and probe were designed from the conserved regions of 16S rRNA gene sequences of cyanobacteria and Microcystis, respectively. Probe match analysis of the Ribosomal Database Project showed that the primers matched with over 97% of cyanobacterial 16S rRNA genes, indicating these can be used to amplify cyanobacteria specifically. The TaqMan probe, which is located between two primers, matched with 98.2% of sequences in genus GpXI, in which most Microcystis strains are included. The numbers of cyanobacterial genes were estimated with the emission of SYBR Green from the amplicons with two primers, whereas those of Microcystis spp. were measured from the fluorescence of CAL Fluor Gold 540 emitted by exonuclease activity of Taq DNA polymerase in amplification. It is expected that this method enhances the accuracy and reduces the time to count cyanobacteria and potential toxigenic Microcystis spp. in aquatic environmental samples.  相似文献   

13.
The structural genes of enterobacteria encoding for the enzymes involved in the assimilatory reduction of sulphate (“cys genes”) were used in order to identify homologous genes from phototrophic cyanobacteria and higher plants. By Southern hybridisation of genomic DNA from the higher organisms with the cys DNA-probes derived from Escherichia coli, discrete restriction fragments were found in higher plants and in cyanobacteria indicating the occurrence of related DNA. Two of the cyanobacterial genes were cloned and identified by DNA and amino acid sequence comparison as the structural genes encoding the PAPS-reductase (EC 1.8.4.-) and the ferredoxin: sulphite-reductase (EC 1.8.7.1). The nucleic acid of both genes showed stretches of highly conserved bases in regions of the sequences which are regarded as the functionally important domains of the gene products.  相似文献   

14.
Three coccoid and two filamentous cyanobacterial strains were isolated from phototrophic biofilms exposed to intense solar radiation on lithic surfaces of the Parasurameswar Temple and Khandagiri caves, located in Orissa State, India. Based on to their morphological features, the three coccoid strains were assigned to the genera Gloeocapsosis and Gloeocapsa, while the two filamentous strains were assigned to the genera Leptolyngbya and Plectonema. Eleven to 12 neutral and acidic sugars were detected in the slime secreted by the five strains. The secretions showed a high affinity for bivalent metal cations, suggesting their ability to actively contribute to weakening the mineral substrata. The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas.  相似文献   

15.
In order to determine the nearly complete 16S rRNA gene sequences of cyanobacteria originating from nonaxenic cultures, a cyanobacterium-specific oligonucleotide probe was developed to distinguish polymerase chain reaction (PCR) products of the cyanobacterial rRNA operons from those resulting from amplification of contaminating bacteria. Using this screening method the 16S rRNA genes of four nonaxenic filamentous cyanobacterial strains belonging to the generaLeptolyngbya andOscillatoria were cloned and sequenced. For the genusLeptolyngbya, the 16S rRNA sequence of the axenic strain PCC 73110 was also determined. Phylogenetic trees were constructed based on complete and partial sequences. The results show that the strainsLeptolyngbya foveolarum Komárek 1964/112,Leptolyngbya sp. VRUC 135 Albertano 1985/1, andLeptolyngbya boryanum PCC 73110 belong to the same cluster. StrainOscillatoria cf.corallinae SAG 8.92, which contains the rare photosynthetic pigment CU-phycoerythrin, is not closely related to other CU-phycoerythrin-containing cyanobacteria.Oscillatoria agardhii CYA 18, which is a representative of planktonicOscillatoria species that form toxic blooms in Norwegian inland waters, has no close relatives in the tree.  相似文献   

16.
Molecular and culture based methods were used to survey endolithic, photosynthetic communities from hot spring-formed travertine rocks of various ages, ranging from<10 to greater than 300,000 years. Much of this travertine contained a 1-3-mm-thick greenish band composed mainly of cyanobacteria 1-5 mm below the rock surface. The travertine rocks experienced desiccation in summer and freezing in winter. A total of 83 environmental 16S rRNA gene sequences were obtained from clone libraries and denaturing gradient gel electrophoresis. Small subunit rRNA gene sequences and cell morphology were determined for 36 cyanobacterial culture isolates from these samples. Phylogenetic analysis showed that the 16S rRNA gene sequences fell into 15 distinct clusters, including several novel lineages of cyanobacteria.  相似文献   

17.
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.  相似文献   

18.
Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria‐specific quantitative PCR surveys of cyanobacteria small‐subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria‐related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.  相似文献   

19.
Three coccoid and two filamentous cyanobacterial strains were isolated from phototrophic biofilms exposed to intense solar radiation on lithic surfaces of the Parasurameswar Temple and Khandagiri caves, located in Orissa State, India. Based on to their morphological features, the three coccoid strains were assigned to the genera Gloeocapsosis and Gloeocapsa, while the two filamentous strains were assigned to the genera Leptolyngbya and Plectonema. Eleven to 12 neutral and acidic sugars were detected in the slime secreted by the five strains. The secretions showed a high affinity for bivalent metal cations, suggesting their ability to actively contribute to weakening the mineral substrata. The secretion of protective pigments in the polysaccharide layers, namely mycosporine amino acid-like substances (MAAs) and scytonemins, under exposure to UV radiation showed how the acclimation response contributes to the persistence of cyanobacteria on exposed lithoid surfaces in tropical areas.  相似文献   

20.
Microcystins are small hepatotoxic peptides produced by a number of cyanobacteria. They are synthesized non-ribosomally by multifunctional enzyme complex synthetases encoded by the mcy genes. Primers deduced from mcy genes were designed to discriminate between toxic microcystin-producing strains and non-toxic strains. Thus, PCR-mediated detection of mcy genes could be a simple and efficient means to identify potentially harmful genotypes among cyanobacterial populations in bodies of water. We surveyed the distribution of the mcyB gene in different Microcystis strains isolated from Chinese bodies of water and confirmed that PCR can be reliably used to identify toxic strains. By omitting any DNA purification steps, the modified PCR protocol can greatly simplify the process. Cyanobacterial cells enriched from cultures, field samples, or even sediment samples could be used in the PCR assay. This method proved sensitive enough to detect mcyB genes in samples with less than 2,000 Microcystis cells per ml. Its accuracy, specificity and applicability were confirmed by sequencing selected DNA amplicons, as well as by HPLC, ELISA and mouse bioassay as controls for toxin production of every strain used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号