首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin inhibition by cyclic peptides from thrombomodulin.   总被引:4,自引:3,他引:1       下载免费PDF全文
Peptides corresponding to the loop regions of the fourth, fifth, and sixth epidermal growth factor (EGF)-like domains of thrombomodulin (TM) have been synthesized and assayed for thrombin inhibition, as indicated by both inhibition of thrombin-mediated fibrinogen clotting and inhibition of the association of thrombin with TM that results in protein C activation. Peptides from the fifth EGF-like domain showed significant inhibition of fibrinogen clotting and protein C activation, whereas peptides from the fourth and sixth EGF-like domains were weak inhibitors in both assays. Two structural features were important for inhibitory potency of the peptides from the fifth EGF-like domain: cyclization by a disulfide bond and attachment of the "tail" amino acids C-terminal to the disulfide loop. Linear control peptides did not significantly inhibit clotting or protein C activation. The C-terminal loop alone, the "tail" peptide, or a mixture of the two were at least 10-fold less potent inhibitors of clotting or protein C activation. A more constrained peptide analog was designed by deletion of an isoleucine within the C5-C6 disulfide loop, TM52-1 + 5C. This analog was a better inhibitor in both assay systems, having a Ki for protein C activation of 26 microM.  相似文献   

2.
Thrombomodulin is an endothelial cell thrombin receptor that serves as a cofactor for thrombin-catalyzed activation of protein C. Structural requirements for thrombin binding and cofactor activity were studied by mutagenesis of recombinant human thrombomodulin expressed on COS-7 and CV-1 cells. Deletion of the fourth epidermal growth factor (EGF)-like domain abolished cofactor activity but did not affect thrombin binding. Deletion of either the fifth or the sixth EGF-like domain markedly reduced both thrombin binding affinity and cofactor activity. Thrombin binding sequences were also localized by assaying the ability of synthetic peptides derived from thrombomodulin to compete with diisopropyl fluorophosphate-inactivated 125I-thrombin binding to thrombomodulin. The two most active peptides corresponded to (a) the entire third loop of the fifth EGF-like domain (Kp = 85 +/- 6 microM) and (b) parts of the second and third loops of the sixth EGF-like domain (Kp = 117 +/- 9 microM). These data suggest that thrombin interacts with two discrete elements in thrombomodulin. Deletion of the Ser/Thr-rich domain dramatically decreased both thrombin binding affinity and cofactor activity and also prevented the formation of a high molecular weight thrombomodulin species containing chondroitin sulfate. Substitutions of this domain with polypeptide segments of decreasing length and devoid of glycosylation sites progressively decreased both cofactor activity and thrombin binding affinity. This correlation suggests that increased proximity of the membrane surface to the thrombin binding site may hinder efficient thrombin binding and the subsequent activation of protein C. Membrane-bound thrombomodulin therefore requires the Ser/Thr-rich domain as an important spacer, in addition to EGF-like domains 4-6, for efficient protein C activation.  相似文献   

3.
Sidote DJ  Hoffman DW 《Biochemistry》2003,42(46):13541-13550
A protein component of the Archaeoglobus fulgidus RNase P was expressed in Escherichia coli, purified, and structurally characterized using multidimensional NMR methods. The dominant structural feature of this 11 kDa protein is a sheet of six antiparallel beta-strands, wrapped around a core of conserved hydrophobic amino acids. Amide proton exchange and (15)N relaxation rate data provide evidence that the first 16 residues of the protein, located before the start of the first beta-strand, and the last 24 residues, located past the end of the last beta-strand, are relatively flexible; this contrasts with the relatively rigid and well-defined structure of the beta-sheet. Amino acid sequence comparisons among a diverse set of species indicate that the A. fulgidus protein is homologous to the human RNase P protein Rpp29, yeast RNase P protein Pop4, and a known archaeal RNase P protein from Methanobacter thermoautotrophicus; conserved hydrophobic residues indicate that the homologous protein in each of these species contains a similar beta-sheet structure. Conserved surface residues located in the loop connecting strands beta2 and beta3, the loop connecting strands beta4 and beta5, and in the flexible N- and C-terminal tails are most likely to have specific interactions with the RNA and other proteins of RNase P. The structural model of an RNase P protein component provided by the present work provides an essential step toward eventually understanding the overall architecture of this complex enzyme and the mechanism by which it performs its functions.  相似文献   

4.
The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet.  相似文献   

5.
Truncated glycine receptors that have been found in human patients suffering from the neuromotor disorder hyperekplexia or in spontaneous mouse models resulted in non-functional ion channels. Rescue of function experiments with the lacking protein portion expressed as a separate independent domain demonstrated restoration of glycine receptor functionality in vitro. This construct harbored most of the TM3-4 loop, TM4, and the C terminus and was required for concomitant transport of the truncated α1 and the complementation domain from the endoplasmic reticulum toward the cell surface, thereby enabling complex formation of functional glycine receptors. Here, the complementation domain was stepwise truncated from its N terminus in the TM3-4 loop. Truncation of more than 49 amino acids led again to loss of functionality in the receptor complex expressed from two independent domain constructs. We identified residues 357–418 in the intracellular TM3-4 loop as being required for reconstitution of functional glycine-gated channels. All complementation constructs showed cell surface protein expression and correct orientation according to glycine receptor topology. Moreover, we demonstrated that the truncations did not result in a decreased protein-protein interaction between both glycine receptor domains. Rather, deletions of more than 49 amino acids abolished conformational changes necessary for ion channel opening. When the TM3-4 loop subdomain harboring residues 357–418 was expressed as a third independent construct together with the truncated N-terminal and C-terminal glycine receptor domains, functionality of the glycine receptor was again restored. Thus, residues 357–418 represent an important determinant in the process of conformational rearrangements following ligand binding resulting in channel opening.  相似文献   

6.
We have isolated a fragment (approximately equal to 10 kDa) of thrombomodulin containing the fifth and sixth epidermal growth factor (EGF)-like regions which retains thrombin binding capacity. The amino-terminal sequence of a 50-kDa active fragment of thrombomodulin derived from elastase proteolysis begins 11 residues before the first EGF-like structure of native thrombomodulin. Subsequent digestion with cyanogen bromide yields a 10-kDa thrombin binding fragment. The amino-terminal sequence of this fragment starts at the fifth EGF-like structure (Phe407). The amino acid composition suggests that this fragment contains the fifth and sixth EGF-like structures with a total of approximately 77 residues. This fragment lacks cofactor activity, but acts as a competitive inhibitor for protein C activation (Ki = 8.6 +/- 1.4 nM). We propose that the fifth and sixth EGF-like structures contain the thrombin binding site of thrombomodulin.  相似文献   

7.
The 1H-NMR spectrum of the snake toxin echistatin has been assigned using homonuclear two-dimensional methods. Consideration of the NOE patterns, coupling constants and putative hydrogen bonds enabled two regular features of secondary structure to be deduced: a beta-sheet/turn between residues 8 and 13 and a small anti-parallel beta-sheet and bulge linking residues 16-20 with residues 30-33. The recognition region of the protein containing the residues RGD lies in a loop joining the two strands of the beta-sheet. The beta-bulge and the loop containing the RGD sequence undergo pH-dependent conformational interconversion, modulated by the side chain of Asp29.  相似文献   

8.
Thrombomodulin (TM) is a cofactor for protein C activation by thrombin and each residue of a consensus Ca2+ site in the sixth epidermal growth factor domain (EGF6) is essential for this cofactor activity [Nagashima, M., Lundh, E., Leonard, J.C., Morser, J. & Parkinson, J.F. (1993) J. Biol. Chem. 268, 2888-2892]. Three soluble analogs of the extracellular domain of TM, solulin (Glu4-Pro490), TME1-6 (Cys227-Cys462) and TMEi4-6 (Val345-Cys462) were prepared for equilibrium dialysis experiments by exhaustive dialysis against Ca2+-depleted buffer. However, all three analogs still contained one tightly bound Ca2+ (Kd approximately 2 microm), which could only be removed by EDTA. Epitope mapping with Ca2+-dependent monoclonal antibodies to EGF6 provided further localization of this tight Ca2+ site. Equilibrium dialysis of the soluble TM analogs in [45Ca2+] between 10 and 200 microm revealed a second Ca2+ site (Kd = 30 +/- 10 microm) in both solulin and TME1-6, but not in TMEi4-6. Ca2+ binding to this second site was unaffected by bound thrombin and we attribute it to the consensus Ca2+ site in EGF3. A 75-fold decrease in the binding affinity of thrombin to TM was observed with immobilized solulin treated with EDTA to remove the high affinity Ca2+ by measuring kassoc and kdiss rates in a BIAcoretrade mark instrument. Ca2+-dependent conformational transitions detected by CD spectroscopy in the far UV indicate a more ordered structure upon Ca2+ binding. Bound Ca2+ stabilized soluble TM against protease digestion at a trypsin-like protease-sensitive site between Arg456 and His457 in EGF6 compared with protease treatment in EDTA. Finally, TM containing EGF domains 4-6, but lacking the interdomain loop between EGF3 and 4 (TME4-6), has an identical Ca2+ dependence for the activation of protein C as found for TMEi4-6, indicating this interdomain loop is not involved in Ca2+ binding.  相似文献   

9.
Thrombomodulin (TM) forms a 1:1 complex with thrombin. Whereas thrombin alone cleaves fibrinogen to make the fibrin clot, the thrombin-TM complex cleaves protein C to initiate the anticoagulant pathway. The fourth and fifth EGF-like domains of TM together form the minimal fragment with anticoagulant cofactor activity. A short linker connects the fourth and fifth EGF-like domains of TM, and Met 388 in the middle of the linker interacts with both domains. Several different structures of TMEGF45 variants are now available, and these show that mutation of Met 388 alters the structure of the fifth domain, as well as the connectivity of the two domains. To probe this phenomenon more thoroughly, NMR backbone dynamics experiments have been carried out on the individual fourth and fifth domains as well as on the wild type, the Met 388 Leu mutant, and the variant in which Met 388 is oxidized. The results presented here show that changes at Met 388 cause significant changes in backbone dynamics in both the fourth and fifth EGF-like domains of TM. Backbone dynamics within the small loop of the fourth domain Tyr 358 correlate with anticoagulant cofactor activity. Backbone dynamics of the thrombin-binding residues Tyr 413 and Ile 414 are inversely correlated with thrombin binding. The preordering of the backbone of Tyr 413 and Ile 414 only occurs in the two-domain fragments, revealing a role for the fourth domain in thrombin binding as well as in anticoagulant cofactor activity.  相似文献   

10.
Single-chain urokinase-type plasminogen activator (scu-PA) can be cleaved by thrombin into a virtually inactive form called thrombin-cleaved two-chain urokinase-type plasminogen activator (tcu-PA/T), a process accelerated by thrombomodulin, which contains six epidermal growth factor (EGF)-like domains. In this study, we identified the EGF-like domains of thrombomodulin required for the acceleration of the inactivation of scu-PA by thrombin using various forms of thrombomodulin (TM). scu-PA was treated with thrombin in the absence and presence of full-length rabbit TM (containing EGF1-6), recombinant TM comprising all of the extracellular domains including EGF1-6 (TMLEO) and recombinant TM comprising EGF4-6 plus the interconnecting region between EGF3 and EGF4 (TMEi4-6), and the tcu-PA/T generated was quantitated in each case. Rabbit TM accelerated the inactivation of scu-PA approximately 35-fold, while both recombinant forms accelerated it only threefold due to the absence of a critical chondroitin sulfate moiety. Subsequently, TME5-6 was prepared by cyanogen bromide digestion of TMEi4-6. TME5-6 bound to thrombin but did not accelerate the activation of protein C. In contrast, the inactivation of scu-PA by thrombin was accelerated to the same extent as that induced by TMLEO and TMEi4-6. This study demonstrates that, in addition to the chondroitin sulfate moiety, only EGF-like domains 5 and 6 are essential for the acceleration of the inactivation of scu-PA by thrombin. This differs from the domains that are critical for activation of protein C (EGF-like domains i4-6) and thrombin activatable fibrinolysis inhibitor (EGF-like domains 3-6).  相似文献   

11.
The thrombin-bound structures of native peptide fragments from the fifth EGF-like domain of thrombomodulin were determined by use of NMR and transferred NOE spectroscopy. The bound peptides assume an EGF-like structure of an antiparallel beta-sheet, a novel structural motif observed for a bound peptide in protein-peptide complexes. There is a remarkable structural resiliency of this structure motif manifested in its ability to accommodate a different number of residues within the disulfide loop. Docking experiments revealed that the key contacts with thrombin are hydrophobic interactions between the side chains of residues Ile 414 and Ile 424 of thrombomodulin and a hydrophobic pocket on the thrombin surface. Residues Leu 415, Phe 419, and Ile 420, which would have been buried in intact EGF-like domains, are unfavorably exposed in the complex of thrombin with the EGF-like thrombomodulin fragment, thus providing a rationale for the enhancement of binding affinity upon the deletion of Ile 420. The unique beta-sheet structures of the bound peptides are specified by the presence of disulfide bridges in the peptides because a corresponding linear thrombomodulin fragment folds into a sheet structure with a different backbone topology. The different bound conformations for the linear and the cyclized peptides indicate that side-chain interactions within a specific environment may dictate the folding of bound peptides in protein-peptide complexes.  相似文献   

12.
The crystal structure of Saccharomyces cerevisiae transketolase, a thiamine diphosphate dependent enzyme, has been determined to 2.5 A resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits. The cofactor, vitamin B1 derived thiamine diphosphate, is bound at the interface between the two subunits. The enzyme subunit is built up of three domains of the alpha/beta type. The diphosphate moiety of thiamine diphosphate is bound to the enzyme at the carboxyl end of the parallel beta-sheet of the N-terminal domain and interacts with the protein through a Ca2+ ion. The thiazolium ring interacts with residues from both subunits, whereas the pyrimidine ring is buried in a hydrophobic pocket of the enzyme, formed by the loops at the carboxyl end of the beta-sheet in the middle domain in the second subunit. The structure analysis identifies amino acids critical for cofactor binding and provides mechanistic insights into thiamine catalysis.  相似文献   

13.
The whole amino acid sequence of nidogen was deduced from cDNA clones isolated from expression libraries and confirmed to approximately 50% by Edman degradation of peptides. The protein consists of some 1217 amino acid residues and a 28-residue signal peptide. The data support a previously proposed dumb-bell model of nidogen by demonstrating a large N-terminal globular domain (641 residues), five EGF-like repeats constituting the rod-like domain (248 residues) and a smaller C-terminal globule (328 residues). Two more EGF-like repeats interrupt the N-terminal and terminate the C-terminal sequences. Weak sequence homologies (25%) were detected between some regions of nidogen, the LDL receptor, thyroglobulin and the EGF precursor. Nidogen contains two consensus sequences for tyrosine sulfation and for asparagine beta-hydroxylation, two N-linked carbohydrate acceptor sites and, within one of the EGF-like repeats an Arg-Gly-Asp sequence. The latter was shown to be functional in cell attachment to nidogen. Binding sites for laminin and collagen IV are present on the C-terminal globule but not yet precisely localized.  相似文献   

14.
The last three consecutive epidermal growth factor (EGF)-like structures of human thrombomodulin constitute the functional domain for protein C-activating cofactor activity and anticoagulant activity. Using site-directed deletion mutagenesis, we found that amino acid Asp349 of TME456, a recombinantly produced protein consisting of EGF-like structures 4, 5, and 6, is essential for retaining full protein C-activating cofactor activity. To investigate the role of Asp349 in the protein C-activating cofactor activity of human thrombomodulin, we have constructed two mutants of TMD123, a recombinantly produced protein consisting of domains D1, D2, and D3 of thrombomodulin, using site-directed point mutagenesis of the thrombomodulin coding sequence. In mutant TMD123A, the Asp349 codon was replaced with an Ala codon and in mutant TMD123E, the Asp349 codon was replaced with a Glu codon. The partially purified mutant proteins were assayed for their protein C-activating cofactor activity at various Ca2+ concentrations. TMD123 and TMD123E protein showed similar high levels of cofactor activity and similar patterns of Ca2+ dependence, while TMD123A had lower cofactor activity and did not show any Ca2+ dependence. We concluded that Asp349 in the fourth EGF-like structure of human thrombomodulin plays a role in its Ca(2+)-mediated binding to protein C.  相似文献   

15.
Synthesis and structure-activity study of myxoma virus growth factor   总被引:1,自引:0,他引:1  
Y Z Lin  X H Ke  J P Tam 《Biochemistry》1991,30(13):3310-3314
Myxoma virus growth factor (MGF) is an 85-residue peptide derived from the gene product of a DNA tumor virus that infects rabbits. The carboxyl domain of MGF possesses about 40% sequence homology with the epidermal growth factor (EGF). This EGF-like domain covering residues 30-83 was synthesized and found to possess putative activities of EGF. It was, however, about 200-fold less active than EGF in the competitive binding of EGF receptor in A431 cells and the stimulation of [3H]-thymidine uptake in NRK 49F cells. MGF(30-83) is a basic and a hydrophobic peptide rich in beta-sheet structure. These features in MGF tend to promote aggregation, leading to precipitation even in strongly denaturing solutions. Thus, the refolding of MGF was achieved with difficulty and resulted in low yield. To increase the synthetic yield of MGF(30-83), a cluster of acidic amino acids was added to the NH2-terminus of MGF(30-83). This approach was found to be effective in minimizing the refolding difficulties and allowed accessibility to the synthesis of analogues in this class of compounds. The relationships of structure and function of MGF were studied by using analogues with point substitution by the corresponding D-amino acid or by Ala at position 44 or 52 and analogues with deletion of basic residues from the amino terminus. Modifications of both the receptor contact and the structural residues greatly reduced the potency of MGF(30-83), and the overall result correlated well with the known structure-activity of the EGF family.  相似文献   

16.
Heregulins are members of the protein family of EGF-like growth and differentiation factors. The primary cell-surface targets of heregulins are heterodimers of the EGF-receptor homolog HER2 with either HER3 or HER4. We used a weighted evolutionary trace analysis to identify structural features that distinguish the EGF-like domain (hrg) of heregulins from other members of the EGF family. In this analysis, each amino acid sequence is weighted according to its uniqueness and the variability in each position is assigned by an amino acid substitution matrix. Conserved residues in heregulin that are variable in other EGF-like domains are considered possible specificity-conferring residues. This analysis identifies two clusters of residues at the foot of the boot-shaped hrg domain. The residues in one cluster are recruited from the N-terminus; those in the other are from the ohm-loop region and show a weak sequence similarity to the N-terminal residues at the opposite side of the boot. The remaining residues with high conservation scores distribute themselves into these two distinct surfaces on hrg. This pseudo-twofold symmetry and the presence of two distinct interfaces may reflect the preference of hrg for heterodimeric versus homodimeric HER complexes.  相似文献   

17.
The transmembrane (TM) subunits of retroviral envelope glycoproteins appear to direct the assembly of the glycoprotein precursor into a discrete oligomeric structure. We have examined mutant Rous sarcoma virus envelope proteins with truncations or deletions within the ectodomain of TM for their ability to oligomerize in a functional manner. Envelope proteins containing an intact surface (SU) domain and a TM domain truncated after residue 120 or 129 formed intracellular trimers in a manner similar to that of proteins that had an intact ectodomain and were efficiently secreted. Whereas independent expression of the SU domain yielded an efficiently transported molecule, proteins containing SU and 17, 29, 37, 59, 73, 88, and 105 residues of TM were defective in intracellular transport. With the exception of a protein truncated after residue 88 of TM, the truncated proteins were also defective in formation of stable trimers that could be detected on sucrose gradients. Deletion mutations within the N-terminal 120 amino acids of TM also disrupted transport to the Golgi complex, but a majority of these mutant glycoproteins were still able to assemble trimers. Deletion of residues 60 to 74 of TM caused the protein to remain monomeric, while a deletion C terminal of residue 88 that removed two cysteine residues resulted in nonspecific aggregation. Thus, it appears that amino acids throughout the N-terminal 120 residues of TM contribute to assembly of a transport-competent trimer. This region of TM contains two amino acid domains capable of forming alpha helices, separated by a potential disulfide-bonded loop. While the N-terminal helical sequence, which extends to residue 85 of TM, may be capable of mediating the formation of Env trimers if C-terminal sequences are deleted, our results show that the putative disulfide-linked loop and C-terminal alpha-helical sequence play a key role in directing the formation of a stable trimer that is competent for intracellular transport.  相似文献   

18.
The three-dimensional structure of telokin, an acidic protein identical to the C-terminal portion of smooth muscle myosin light chain kinase from turkey gizzard, has been determined at 2.8 A resolution and refined to a crystallographic R-factor of 19.5% for all measured X-ray data from 30 A to 2.8 A. Crystals used in the investigation belonged to the space group P3(2)21, with one molecule per asymmetric unit and unit cell dimensions of a = b = 64.4 A and c = 50.6 A. Telokin contains 154 amino acid residues, 103 of which were visible in the electron density map. The overall molecular fold of telokin consists of seven strands of antiparallel beta-pleated sheet that wrap around to form a barrel. There is also an extended tail of eight amino acid residues at the N terminus that does not participate in beta-sheet formation. The beta-barrel can be simply envisioned as two layers of beta-sheet, nearly parallel to one another, with one layer containing four and the other three beta-strands. This type of beta-barrel, as seen in telokin, was first observed for the CH2 domain of an immunoglobulin fragment Fc. Telokin is an intracellular protein and, as such, does not contain the disulphide linkage between beta-strands B and F normally observed in the immunoglobulin constant domains. It does, however, contain two cysteine amino acid residues (Cys63 and Cys115) that are situated at structurally identical positions to those forming the disulphide linkage in the immunoglobulin constant domain.  相似文献   

19.
Thrombomodulin is the endothelial cell cofactor for thrombin-catalyzed activation of protein C. Recently, we isolated a 10-kDa thrombin binding fragment, CB3, from the epidermal growth factor precursor homology domain (epidermal growth factor (EGF)-like regions) of thrombomodulin (Kurasawa, S., Stearns, D. J., Jackson, K.W., and Esmon, C.T. (1988) J. Biol. Chem. 263, 5993-5996). The CB3 fragment did not, however, support protein C activation. A 29-kDa fragment, called CB23, has now been isolated and corresponds to residues 310-486 in the EGF-like region of thrombomodulin. The CB23 fragment bound thrombin and accelerated thrombin-catalyzed protein C activation. With two separate preparations of CB23, the Km for protein C was 1.6 and 1.9 microM and the Kd for thrombin was 8.9 and 13.2 nM. The carboxyl terminus of CB23 and CB3 was identified by isolation and sequence analysis of a tryptic peptide from CB3. The sequence of this peptide corresponded to Asn457-Ser486, indicating that the carboxyl terminus of these fragments is 6 residues beyond the sixth EGF-like region of thrombomodulin. In addition, although CB3 cannot accelerate protein C activation, CB3 did inhibit the rate of thrombin-catalyzed fibrinopeptide release from fibrinogen. Thus, like native thrombomodulin, CB3 will alter thrombin's substrate specificity, but protein C activation requires additional information all of which can be provided by other regions of the EGF-like domain.  相似文献   

20.
In an effort to better understand beta-sheet assembly, we have investigated the evolutionary behavior of neighboring residues on adjacent antiparallel beta-strands. Residue pairs were classified according to solvent exposure as well as by whether their backbone NH and C==O groups are hydrogen bonded. The conservation and covariation of 19,241 pairs in 219 sequence alignments was analyzed. Buried pairs were found to be the most conserved, while stronger covariation was detected in the solvent-exposed pairs. However, residues on neighboring strands showed a degree of conservation and covariation similar to that of well-separated residues on the same strand, suggesting that evolutionary pressure to maintain complementarity between pairs on neighboring strands is weak. Moreover, in spite of the preference of certain amino acid pairs to occupy neighboring positions on adjacent strands, such favored pairs are neither more strongly mutually conserved nor covary more strongly than pairs of the same type in non-interacting positions. Although the beta-sheet pairs did not show outstanding evolutionary coupling, in many protein families significant conservation and covariation patterns were detected for some of the residue pairs. Overall, the weak evolutionary conservation and covariation of the beta-sheet pairs indicates that sheet structure is unlikely to be dictated by specific side-chain interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号