共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The model structure of Escherichia coli AlkA (3-methyladenine-DNA glycosylase II) protein complexed with the double helical DNA is elucidated from X-ray structures of related DNA glycosylase enzymes and mutagenic studies. The free enzyme structure has no difficulty in building the platform to afford the bended and wedge DNA with the flipped out nucleotide. The helix-hairpin-helix motif and the insertion residue L125 in free structure can be located without severe contacts. The alkylated base is surrounded with a variety of aromatic rings, such as W218, W272, Y273 and F18. The aromatic indole ring of tryptophan is a good candidate for forming the stacking with the positively charged base moiety pi-cation interaction). Some hydrophobic residues, such as V128 and L240, also attend to substrate recognition. 相似文献
3.
4.
Zhuo Mao Lu Pan Weixiang Wang Jian Sun Shan Shan Qiang Dong Xiaoping Liang Linchang Dai Xiaojun Ding She Chen Zhuqiang Zhang Bing Zhu Zheng Zhou 《Cell research》2014,24(4):389-399
H2A.Z is a highly conserved histone variant in all species. The chromatin deposition of H2A.Z is specifically catalyzed by the yeast chromatin remodeling complex SWR1 and its mammalian counterpart SRCAP. However, the mechanism by which H2A.Z is preferentially recognized by non-histone proteins remains elusive. Here we identified Anp32e, a novel higher eukaryote-specific histone chaperone for H2A.Z. Anp32e preferentially associates with H2A.Z-H2B dimers rather than H2A-H2B dimers in vitro and in vivo and dissociates non-nucleosomal aggregates formed by DNA and H2A-H2B. We determined the crystal structure of the Anp32e chaperone domain (186-232) in complex with the H2A.Z-H2B dimer. In this structure, the region containing Anp32e residues 214-224, which is absent in other Anp32 family proteins, specifically interacts with the extended H2A.Z αC helix, which exhibits an unexpected conformational change. Genome-wide profiling of Anp32e revealed a remarkable co-occupancy between Anp32e and H2A.Z. Cells overexpressing Anp32e displayed a strong global H2A.Z loss at the +1 nucleosomes, whereas cells depleted of Anp32e displayed a moderate global H2A.Z increase at the +1 nucleosomes. This suggests that Anp32e may help to resolve the non-nucleosomal H2A.Z aggregates and also facilitate the removal of H2A.Z at the +1 nucleosomes, and the latter may help RNA polymerase II to pass the first nucleosomal barrier. 相似文献
5.
Reilly PT Afzal S Wakeham A Haight J You-Ten A Zaugg K Dembowy J Young A Mak TW 《PloS one》2010,5(10):e13597
Background
Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, suggesting that it has an important function in organismal survival.Principal Findings
Here, we demonstrate that the Anp32e gene can be deleted in mice without any apparent effect on their wellbeing. No defects in thymocyte apoptosis in response to various stresses, fibroblast growth, gross behaviour, physical ability, or pathogenesis were defined. Furthermore, combined deletion of Anp32a and Anp32e also resulted in a viable and apparently healthy mouse.Significance
These results provide evidence that significant functional redundancy exists among Anp32 family members. 相似文献6.
7.
The Na+/H+ exchanger regulatory factor (NHERF) is a key adaptor protein involved in the anchoring of ion channels and receptors to the actin cytoskeleton through binding to ERM (ezrin/radixin/moesin) proteins. NHERF binds the FERM domain of ERM proteins, although NHERF has no signature Motif-1 sequence for FERM binding found in adhesion molecules. The crystal structures of the radixin FERM domain complexed with the NHERF-1 and NHERF-2 C-terminal peptides revealed a peptide binding site of the FERM domain specific for the 13 residue motif MDWxxxxx(L/I)Fxx(L/F) (Motif-2), which is distinct from Motif-1. This Motif-2 forms an amphipathic alpha helix for hydrophobic docking to subdomain C of the FERM domain. This docking causes induced-fit conformational changes in subdomain C and affects binding to adhesion molecule peptides, while the two binding sites are not overlapped. Our studies provide structural paradigms for versatile ERM linkages between membrane proteins and the cytoskeleton. 相似文献
8.
Structural and kinetic bases for the recognition of tRNATyr by tyrosyl-tRNA synthetase 总被引:9,自引:0,他引:9
The aminoacylation of transfer RNA is a key step of translation since it relates amino acids to anticodons. To understand how the tyrosyl-tRNA synthetase (TyrTS) from Bacillus stearothermophilus recognizes tRNA(Tyr), we constructed 14 new mutant TyrTS by site-directed mutagenesis, determined their kinetic properties and used these and previous data to construct a detailed structural model of the complex between TyrTS and the acceptor arm of tRNA(Tyr). In the model Arg207, Lys208, Asn 146 and Glu 152 interact with phosphate groups. A contact between guanine 1 and Trp 196 is unspecific. Adenine 73, the fourth base from the 3' end, is specifically recognized through Trp 196 and the main-chain carbonyl of Ala150. At the active site, adenine 76 might interact with Lys82 and Arg86. There is a tight complementarity in shape between the tRNA and the synthetase. TyrTS and tRNA(Tyr) form an additional contact, in the vicinity of adenine 73, when their complex goes from the initial state to the transition state. The rate of aminoacylation, through the precise recognition of adenine 73, could thus be an important factor of discrimination by TyrTS among tRNAs. 相似文献
9.
Milani M Pesce A Nardini M Ouellet H Ouellet Y Dewilde S Bocedi A Ascenzi P Guertin M Moens L Friedman JM Wittenberg JB Bolognesi M 《Journal of inorganic biochemistry》2005,99(1):97-109
Truncated hemoglobins (trHbs) are low-molecular-weight oxygen-binding heme-proteins distributed in eubacteria, cyanobacteria, unicellular eukaryotes, and in higher plants, constituting a distinct group within the hemoglobin (Hb) superfamily. TrHbs display amino acid sequences 20-40 residues shorter than classical (non)vertebrate Hbs and myoglobins, to which they are scarcely related by sequence similarity. The trHb tertiary structure is based on a 2-on-2 alpha-helical sandwich, which represents a striking editing of the highly conserved 3-on-3 alpha-helical globin fold, achieved through deletion/truncation of alpha-helices and specific residue substitutions. Despite their 'minimal' polypeptide chain span, trHbs display an inner tunnel/cavity system held to support ligand diffusion to/from the heme distal pocket, accumulation of heme ligands within the protein matrix, and/or multiligand reactions. Moreover, trHbs bind and effectively stabilize the heme and recognize diatomic ligands (i.e., O2, CO, NO, and cyanide), albeit with varying thermodynamic and kinetic parameters. Here, structural bases for heme binding and diatomic ligand recognition by trHbs are reviewed. 相似文献
10.
Mori T Kitano K Terawaki S Maesaki R Fukami Y Hakoshima T 《The Journal of biological chemistry》2008,283(43):29602-29612
CD44 is an important adhesion molecule that functions as the major hyaluronan receptor which mediates cell adhesion and migration in a variety of physiological and pathological processes. Although full activity of CD44 requires binding to ERM (ezrin/radixin/moesin) proteins, the CD44 cytoplasmic region, consisting of 72 amino acid residues, lacks the Motif-1 consensus sequence for ERM binding found in intercellular adhesion molecule (ICAM)-2 and other adhesion molecules of the immunoglobulin superfamily. Ultracentrifugation sedimentation studies and circular dichroism measurements revealed an extended monomeric form of the cytoplasmic peptide in solution. The crystal structure of the radixin FERM domain complexed with a CD44 cytoplasmic peptide reveals that the KKKLVIN sequence of the peptide forms a beta strand followed by a short loop structure that binds subdomain C of the FERM domain. Like Motif-1 binding, the CD44 beta strand binds the shallow groove between strand beta5C and helix alpha1C and augments the beta sheet beta5C-beta7C from subdomain C. Two hydrophobic CD44 residues, Leu and Ile, are docked into a hydrophobic pocket with the formation of hydrogen bonds between Asn of the CD44 short loop and loop beta4C-beta5C from subdomain C. This binding mode resembles that of NEP (neutral endopeptidase 24.11) rather than ICAM-2. Our results reveal a characteristic versatility of peptide recognition by the FERM domains from ERM proteins, suggest a possible mechanism by which the CD44 tail is released from the cytoskeleton for nuclear translocation by regulated intramembrane proteolysis, and provide a structural basis for Smad1 interactions with activated CD44 bound to ERM protein. 相似文献
11.
Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins 总被引:1,自引:0,他引:1
Lim JH Kim MS Kim HE Yano T Oshima Y Aggarwal K Goldman WE Silverman N Kurata S Oh BH 《The Journal of biological chemistry》2006,281(12):8286-8295
Drosophila peptidoglycan recognition protein (PGRP)-LCx and -LCa are receptors that preferentially recognize meso-diaminopimelic acid (DAP)-type peptidoglycan (PGN) present in Gram-negative bacteria over lysine-type PGN of gram-positive bacteria and initiate the IMD signaling pathway, whereas PGRP-LE plays a synergistic role in this process of innate immune defense. How these receptors can distinguish the two types of PGN remains unclear. Here the structure of the PGRP domain of Drosophila PGRP-LE in complex with tracheal cytotoxin (TCT), the monomeric DAP-type PGN, reveals a buried ionic interaction between the unique carboxyl group of DAP and a previously unrecognized arginine residue. This arginine is conserved in the known DAP-type PGN-interacting PGRPs and contributes significantly to the affinity of the protein for the ligand. Unexpectedly, TCT induces infinite head-to-tail dimerization of PGRP-LE, in which the disaccharide moiety, but not the peptide stem, of TCT is positioned at the dimer interface. A sequence comparison suggests that TCT induces heterodimerization of the ectodomains of PGRP-LCx and -LCa in a closely analogous manner to prime the IMD signaling pathway, except that the heterodimer formation is nonperpetuating. 相似文献
12.
Jianping Liu Lifeng Pan 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(10):1410-1422
Linear ubiquitin chain is a latest discovered type of poly-ubiquitin chain that is broadly involved in innate immune and inflammatory pathways. Dysfunctions in its assembly, recognition or disassembly are intimately related with numerous immunodeficiency or autoimmune diseases. Our understanding of the molecular mechanism for linear ubiquitin chain formation, recognition and disassembly has being significantly evolved in recent years, with particular contribution from the biochemical and structural characterizations of related proteins. Here, we focus on the relevant proteins for the synthesis, recognition and digestion of linear ubiquitin chain, and review recent findings to summarize currently known molecular mechanism from a perspective of structural biology. 相似文献
13.
Sekine S Shichiri M Bernier S Chênevert R Lapointe J Yokoyama S 《Structure (London, England : 1993)》2006,14(12):1791-1799
Glutamyl-tRNA synthetase (GluRS) is one of the aminoacyl-tRNA synthetases that require the cognate tRNA for specific amino acid recognition and activation. We analyzed the role of tRNA in amino acid recognition by crystallography. In the GluRS*tRNA(Glu)*Glu structure, GluRS and tRNA(Glu) collaborate to form a highly complementary L-glutamate-binding site. This collaborative site is functional, as it is formed in the same manner in pretransition-state mimic, GluRS*tRNA(Glu)*ATP*Eol (a glutamate analog), and posttransition-state mimic, GluRS*tRNA(Glu)*ESA (a glutamyl-adenylate analog) structures. In contrast, in the GluRS*Glu structure, only GluRS forms the amino acid-binding site, which is defective and accounts for the binding of incorrect amino acids, such as D-glutamate and L-glutamine. Therefore, tRNA(Glu) is essential for formation of the completely functional binding site for L-glutamate. These structures, together with our previously described structures, reveal that tRNA plays a crucial role in accurate positioning of both L-glutamate and ATP, thus driving the amino acid activation. 相似文献
14.
Hiyama TB Zhao M Kitago Y Yao M Sekine S Terada T Kuroishi C Liu ZJ Rose JP Kuramitsu S Shirouzu M Watanabe N Yokoyama S Tanaka I Wang BC 《Journal of structural and functional genomics》2006,7(3-4):119-129
The single-domain coenzyme A (CoA)-binding protein is conserved in bacteria, archaea, and a few eukaryal taxa. It consists of a Rossmann-fold domain, belonging to the FAD/NAD(P)-binding ;superfamily. The crystal structure of the Thermus thermophilus single-domain CoA-binding protein, TTHA1899, has been determined and it has been demonstrated, by isothermal titration calorimetry, that the protein interacts with CoA [Wada T. et al. Acta Crystallogr D Biol Crystallogr 59 (2003) 1213]. In the present study, we determined the crystal structures of an orthologous protein from the archaeon Pyrococcus horikoshii (PH1109), alone and complexed with CoA, at 1.65 A and 1.70 A resolutions, respectively, and that of P. furiosus protein (PF0725) in the CoA-bound form at 1.70 A. The CoA-bound structures are very similar to each other, revealing that the Pyrococcus proteins bind CoA in a 1:1 stoichiometry. Five loop-containing regions form the CoA-binding groove, to which the CoA molecule is docked. A comparison of the structures and the sequences of the Pyrococcus proteins with those of the T. theromphilus orthologue TTHA1899 indicated that archaeal and bacterial single-domain CoA-binding proteins share the same CoA-binding mode. Nevertheless, many of the peripheral residues involved in the hydrogen-bonding/electrostatic interactions with CoA are not strictly conserved in the family. The CoA interaction of the single-domain CoA-binding proteins is significantly different and much more extensive than that of the multi-subunit/multi-domain CoA-binding protein succinyl-CoA synthetase. 相似文献
15.
A S Spirin 《Uspekhi sovremenno? biologii》1974,77(2):155-166
16.
Montanari A De Luca C Di Micco P Morea V Frontali L Francisci S 《RNA (New York, N.Y.)》2011,17(11):1983-1996
Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNA(Ile). Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNA(Ile) mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNA(Leu) and tRNA(Val) mutants. 相似文献
17.
B30.2/SPRY domains are found in numerous proteins that cover a wide spectrum of biological functions, including regulation of cytokine signaling and innate retroviral restriction. Herein, we report the crystal structure of the B30.2/SPRY domain of a SPRY domain-containing SOCS box (SSB) protein, GUSTAVUS, complexed with a 20 amino acid peptide derived from the RNA helicase VASA, revealing how these domains recognize target proteins. The peptide-binding site is conformationally rigid and has a preformed pocket. The interaction between the pocket and the Asp-Ile-Asn-Asn-Asn-Asn sequence within the peptide accounts for the high-affinity binding between GUSTAVUS and VASA. This observation led to a facile identification of the Glu-Leu-Asn-Asn-Asn-Leu sequence as the recognition motif in a proapoptotic protein Par-4 for its interaction with a GUSTAVUS homolog, SSB-1. Ensuing analyses indicated that many B30.2/SPRY domains have a similar preformed pocket, which would allow them to bind multiple targets. 相似文献
18.
The capsular polysaccharide from Klebsiella K32 has been studied by using methylation, periodate oxidation, and partial-hydrolysis techniques. The polysaccharide is shown to comprise the four-sugar repeating unit below. Features of interest in this structure include the presence of a β-linked l-rhamnosyl residue, and the extreme lability of the 1-carboxyethylidene acetal towards acid. N.m.r. spectroscopy was used extensively to establish the nature of the anomeric linkages and to identify oligosaccharides obtained by the various degradative techniques used. 相似文献
19.
The endosomal sorting complex required for transport (ESCRT-I) is a 350-kDa complex of three proteins, Vps23, Vps28, and Vps37. The N-terminal ubiquitin-conjugating enzyme E2 variant (UEV) domain of Vps23 is required for sorting ubiquitinated proteins into the internal vesicles of multivesicular bodies. UEVs are homologous to E2 ubiquitin ligases but lack the conserved cysteine residue required for catalytic activity. The crystal structure of the yeast Vps23 UEV in a complex with ubiquitin (Ub) shows the detailed interactions made with the bound Ub. Compared with the solution structure of the Tsg101 UEV (the human homologue of Vps23) in the absence of Ub, two loops that are conserved among the ESCRT-I UEVs move toward each other to grip the Ub in a pincer-like grasp. The contacts with the UEV encompass two adjacent patches on the surface of the Ub, one containing several hydrophobic residues, including Ile-8(Ub), Ile-44(Ub), and Val-70(Ub), and the second containing a hydrophilic patch including residues Asn-60(Ub), Gln-62(Ub), Glu-64(Ub). The hydrophobic Ub patch interacting with the Vps23 UEV overlaps the surface of Ub interacting with the Vps27 ubiquitin-interacting motif, suggesting a sequential model for ubiquitinated cargo binding by these proteins. In contrast, the hydrophilic patch encompasses residues uniquely interacting with the ESCRT-I UEV. The structure provides a detailed framework for design of mutants that can specifically affect ESCRT-I-dependent sorting of ubiquitinated cargo without affecting Vps27-mediated delivery of cargo to endosomes. 相似文献
20.
Tonozuka T Sogawa A Yamada M Matsumoto N Yoshida H Kamitori S Ichikawa K Mizuno M Nishikawa A Sakano Y 《The FEBS journal》2007,274(8):2109-2120
The crystal structure of a Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein (TvuCMBP) complexed with gamma-cyclodextrin has been determined. Like Escherichia coli maltodextrin-binding protein (EcoMBP) and other bacterial sugar-binding proteins, TvuCMBP consists of two domains, an N- and a C-domain, both of which are composed of a central beta-sheet surrounded by alpha-helices; the domains are joined by a hinge region containing three segments. gamma-Cyclodextrin is located at a cleft formed by the two domains. A common functional conformational change has been reported in this protein family, which involves switching from an open form to a sugar-transporter bindable form, designated a closed form. The TvuCMBP-gamma-cyclodextrin complex structurally resembles the closed form of EcoMBP, indicating that TvuCMBP complexed with gamma-cyclodextrin adopts the closed form. The fluorescence measurements also showed that the affinities of TvuCMBP for cyclodextrins were almost equal to those for maltooligosaccharides. Despite having similar folds, the sugar-binding site of the N-domain part of TvuCMBP and other bacterial sugar-binding proteins are strikingly different. In TvuCMBP, the side-chain of Leu59 protrudes from the N-domain part into the sugar-binding cleft and orients toward the central cavity of gamma-cyclodextrin, thus Leu59 appears to play the key role in binding. The cleft of the sugar-binding site of TvuCMBP is also wider than that of EcoMBP. These findings suggest that the sugar-binding site of the N-domain part and the wide cleft are critical in determining the specificity of TvuCMBP for gamma-cyclodextrin. 相似文献