首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many plant disease resistance (R) genes encode proteins predicted to have an N-terminal coiled-coil (CC) domain, a central nucleotide-binding site (NBS) domain and a C-terminal leucine-rich repeat (LRR) domain. These CC-NBS-LRR proteins recognize specific pathogen-derived products and initiate a resistance response that often includes a type of cell death known as the hypersensitive response (HR). Co-expression of the potato CC-NBS-LRR protein Rx and its elicitor, the PVX coat protein (CP), results in a rapid HR. Surprisingly, co-expression of the LRR and CC-NBS as separate domains also resulted in a CP-dependent HR. Likewise, the CC domain complemented a version of Rx lacking this domain (NBS- LRR). Correspondingly, the LRR domain interacted physically in planta with the CC-NBS, as did CC with NBS-LRR. Both interactions were disrupted in the presence of CP. However, the interaction between CC and NBS-LRR was dependent on a wild-type P-loop motif, whereas the interaction between CC-NBS and LRR was not. We propose that activation of Rx entails sequential disruption of at least two intramolecular interactions.  相似文献   

3.
Fibroblast growth factor receptors (FGFRs) play critical roles in craniofacial and skeletal development via multiple signaling pathways including MAPK, PI3K/AKT, and PLC-γ. FGFR-mediated signaling is modulated by several regulators. Proteins with leucine-rich repeat (LRR) and/or immunoglobulin (IG) superfamily domains have been suggested to interact with FGFRs. In addition, fibronectin leucine-rich repeat transmembrane protein 3 (FLRT3) has been shown to modulate the FGFR-mediated signaling via the fibronectin type III (FNIII) domain. Therefore proteins with LRR, IG, and FNIII are candidate regulators of the FGFRs. Here we identify leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) as a regulator of the FGFRs.  相似文献   

4.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions.  相似文献   

5.
Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure-function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase-activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner.  相似文献   

6.
Choi du S  Hwang IS  Hwang BK 《The Plant cell》2012,24(4):1675-1690
Plants recruit innate immune receptors such as leucine-rich repeat (LRR) proteins to recognize pathogen attack and activate defense genes. Here, we identified the pepper (Capsicum annuum) pathogenesis-related protein10 (PR10) as a leucine-rich repeat protein1 (LRR1)-interacting partner. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the specific interaction between LRR1 and PR10 in planta. Avirulent Xanthomonas campestris pv vesicatoria infection induces PR10 expression associated with the hypersensitive cell death response. Transient expression of PR10 triggers hypersensitive cell death in pepper and Nicotiana benthamiana leaves, which is amplified by LRR1 coexpression as a positive regulator. LRR1 promotes the ribonuclease activity and phosphorylation of PR10, leading to enhanced cell death signaling. The LRR1-PR10 complex is formed in the cytoplasm, resulting in its secretion into the apoplastic space. Engineered nuclear confinement of both proteins revealed that the cytoplasmic localization of the PR10-LRR1 complex is essential for cell death-mediated defense signaling. PR10/LRR1 silencing in pepper compromises resistance to avirulent X. campestris pv vesicatoria infection. By contrast, PR10/LRR1 overexpression in Arabidopsis thaliana confers enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that the cytosolic LRR-PR10 complex is responsible for cell death-mediated defense signaling.  相似文献   

7.
The pepper L gene conditions the plant's resistance to Tobamovirus spp. Alleles L(1), L(2), L(3), and L(4) confer a broadening spectra of resistance to different virus pathotypes. In this study, we report the genetic basis for the hierarchical interaction between L genes and Tobamovirus pathotypes. We cloned L(3) using map-based methods, and L(1), L(1a), L(1c), L(2), L(2b), and L(4) using a homology-based method. L gene alleles encode coiled-coil, nucleotide-binding, leucine-rich repeat (LRR)-type resistance proteins with the ability to induce resistance response to the viral coat protein (CP) avirulence effectors by themselves. Their different recognition spectra in original pepper species were reproduced in an Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana. Chimera analysis with L(1), which showed the narrowest recognition spectrum, indicates that the broader recognition spectra conferred by L(2), L(2b), L(3), and L(4) require different subregions of the LRR domain. We identified a critical amino acid residue for the determination of recognition spectra but other regions also influenced the L genes' resistance spectra. The results suggest that the hierarchical interactions between L genes and Tobamovirus spp. are determined by the interaction of multiple subregions of the LRR domain of L proteins with different viral CP themselves or some protein complexes including them.  相似文献   

8.
Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.  相似文献   

9.
Ng A  Xavier RJ 《Autophagy》2011,7(9):1082-1084
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2-45 leucine-rich repeats, with each repeat about 20-30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here.  相似文献   

10.
《Autophagy》2013,9(9):1082-1084
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2–45 leucine-rich repeats, with each repeat about 20–30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here.  相似文献   

11.
The Nogo receptor (NgR) plays a central role in mediating growth-inhibitory activities of myelin-derived proteins, thereby severely limiting axonal regeneration after injury of the adult mammalian central nervous system (CNS). The inhibitory proteins Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) all bind to the extracellular leucine-rich repeat (LRR) domain of NgR, which provides a large molecular surface for protein-protein interactions. However, epitopes within the LRR domain of NgR for binding Nogo, MAG and OMgp have not yet been revealed. Here, we report an evolutionary approach based on the ribosome display technology for detecting regions involved in ligand binding. By applying this method of "affinity fingerprinting" to the NgR ligand binding domain we were able to detect a distinct region important for binding to Nogo. Several residues defining the structural epitope of NgR involved in interaction with Nogo were subsequently confirmed by alanine scanning mutagenesis.  相似文献   

12.
The neuronal apoptosis-inhibitory protein (NAIP) is the founding member of the mammalian family of inhibitor of apoptosis (IAP) proteins (also known as BIRC proteins) and has been shown to be antiapoptotic both in vivo and in vitro. The 160-kDa NAIP contains three distinct regions: an amino-terminal cluster of three baculoviral inhibitory repeat (BIR) domains, a central nucleotide binding oligomerization domain (NOD), and a carboxyl-terminal leucine-rich repeat (LRR) domain. The presence of the NOD and LRR domains renders NAIP unique among the IAPs and suggests that NAIP activity is regulated in a manner distinct from that of other members of the family. In this report, we examined the interaction of various regions of NAIP with caspase-9 and Smac. Recombinant NAIPs with truncations of the carboxyl-terminal LRR or NOD-LRR regions bound to caspase-9. In contrast, the full-length protein did not, suggesting some form of structural autoregulation. However, the association of the wild type full-length protein with caspase-9 was observed when interaction analysis was performed in the presence of ATP. Furthermore, mutation of the NAIP ATP binding pocket allowed full-length protein to interact with caspase-9. Thus, we conclude that NAIP binds to caspase-9 with a structural requirement for ATP and that in the absence of ATP the LRR domain negatively regulates the caspase-9-inhibiting activity of the BIR domains. Interestingly, and in contrast to the X-chromosome-linked inhibitor of apoptosis protein (XIAP), NAIP-mediated inhibition of caspase-9 was not countered by a peptide containing an amino-terminal IAP binding motif (IBM). Consistent with this observation was the failure of Smac protein to interact with the NAIP BIR domains. These results demonstrate that NAIP is distinct from the other IAPs, both in demonstrating a ligand-dependent caspase-9 interaction and in demonstrating a distinct mechanism of inhibition.  相似文献   

13.
Axonemes are highly organized microtubule-based structures conserved in many eukaryotes. In an attempt to study axonemes by a proteomics approach, we selectively cloned cDNAs of axonemal proteins by immunoscreening the testis cDNA library from the ascidian Ciona intestinalis by using an antiserum against whole axonemes. We report here a 37-kDa protein of which cDNA occurred most frequently among total positive clones. This protein, named LRR37, belongs to the class of SDS22+ leucine-rich repeat (LRR) family. LRR37 is different from the LRR outer arm dynein light chain reported in Chlamydomonas and sea urchin flagella, and thus represents a novel axonemal LRR protein. Immunoelectron microscopy by using a polyclonal antibody against LRR37 showed that it is localized on the tip of the radial spoke, most likely on the spoke head. The LRR37 protein in fact seems to form a complex together with radial spoke protein 3 in a KI extract of the axonemes. These results suggest that LRR37 is a component of the radial spoke head and is involved in the interaction with other radial spoke components or proteins in the central pair projection.  相似文献   

14.
L locus resistance (R) proteins are nucleotide binding (NB-ARC) leucine-rich repeat (LRR) proteins from flax (Linum usitatissimum) that provide race-specific resistance to the causal agent of flax rust disease, Melampsora lini. L5 and L6 are two alleles of the L locus that directly recognize variants of the fungal effector AvrL567. In this study, we have investigated the molecular details of this recognition by site-directed mutagenesis of AvrL567 and construction of chimeric L proteins. Single, double and triple mutations of polymorphic residues in a variety of AvrL567 variants showed additive effects on recognition strength, suggesting that multiple contact points are involved in recognition. Domain-swap experiments between L5 and L6 show that specificity differences are determined by their corresponding LRR regions. Most positively selected amino acid sites occur in the N- and C-terminal LRR units, and polymorphisms in the first seven and last four LRR units contribute to recognition specificity of L5 and L6 respectively. This further confirms that multiple, additive contact points occur between AvrL567 variants and either L5 or L6. However, we also observed that recognition of AvrL567 is affected by co-operative polymorphisms between both adjacent and distant domains of the R protein, including the TIR, ARC and LRR domains, implying that these residues are involved in intramolecular interactions to optimize detection of the pathogen and defense signal activation. We suggest a model where Avr ligand interaction directly competes with intramolecular interactions to cause activation of the R protein.  相似文献   

15.
The combination of leucine-rich repeat (LRR) and immunoglobulin-like (Ig) domains is found in the domain architecture of the Trk neurotrophin receptor protein. Recently dozens of such proteins simultaneously carrying LRR and Ig domains as the Trk receptors have been identified. Given the significant biological roles of Trk and such newly identified proteins, we have searched the public database for human proteins with LRR and Ig domains (collectively termed the leucine-rich repeat and Ig domain-containing protein, LRRIG protein, in this study), and have analyzed the mRNA expression pattern of mouse orthologs of obtained human LRRIG proteins at embryonic day 10. The list of the LRRIG proteins includes 36 human proteins: four LINGO, three NGL, five SALM, three NLRR, three Pal, two ISLR, three LRIG, two GPR, two Adlican, two Peroxidasin-like proteins, three Trk neurotrophin receptors, a yet unnamed protein AAI11068, and three AMIGO. Some molecules (LINGO2, LINGO4, NGL1, SALM1, SALM5, and TrkB) were expressed exclusively in neuronal tissues, whereas others (ISLR1, GPR124, and Adlican2) exhibited non-neuronal expression profiles. However, the majority of LRRIG protein family exhibited broad mRNA tissue-expression profiles.  相似文献   

16.
The innate immune system of both plants and animals uses immune receptors to detect pathogens and trigger defence responses. Despite having distinct evolutionary origin, most plant and animal immune receptors have a leucine-rich repeat (LRR) domain. The LRR domain adopts a slender conformation that maximizes surface area and has been shown to be ideal for mediating protein–protein interactions. Although the LRR domain was expected to be a platform for pathogen recognition, the NB-LRR class of plant innate immune receptors uses its LRR domain to carry out many other roles. This review discusses the domain architecture of plant LRRs and the various roles ascribed to this motif.  相似文献   

17.
18.
植物抗病基因结构、功能及其进化机制研究进展   总被引:9,自引:0,他引:9  
植物与病原菌在长期的共进化和相互选择的过程中,逐渐形成了组织障碍、非寄主抗性和小种专化抗性等有效的防御机制。小种专化抗性(基因对基因抗性)主要是由植物抗病基因识别相应的病原菌无毒基因并激活植物体内抗病信号进而抵御病原菌的侵染。从目前已克隆的 70 多个抗病基因来看,它们在结构上具有高度保守性,主要包括核苷酸结合位点(NBS),亮氨酸重复结构(LRR), 蛋白激酶结构域(PK), 果蝇蛋白 Toll 和哺乳动物蛋白质白细胞介素 1 受体[interleukin(IL)-1 receptor]类似结构域(TIR), 双螺旋结构(CC)或亮氨酸拉链(LZ)和跨膜结构域(TM)等,其在抗病基因与病原菌无毒(效应)蛋白互作以及植物内部免疫信号传导中起着重要的作用。同时,抗病基因又通过基因复制、遗传重组等进化机制形成多基因家族,为植物抗病的专化性和多样性提供了重要的遗传基础。本文主要讨论了近来已克隆抗病基因的结构特征、功能以及抗病基因进化机制研究的进展。  相似文献   

19.
The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, I describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells, and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.  相似文献   

20.
Rairdan GJ  Moffett P 《The Plant cell》2006,18(8):2082-2093
Plant nucleotide binding and leucine-rich repeat (NB-LRR) proteins contain a region of homology known as the ARC domain located between the NB and LRR domains. Structural modeling suggests that the ARC region can be subdivided into ARC1 and ARC2 domains. We have used the potato (Solanum tuberosum) Rx protein, which confers resistance to Potato virus X (PVX), to investigate the function of the ARC region. We demonstrate that the ARC1 domain is required for binding of the Rx N terminus to the LRR domain. Domain-swap experiments with Rx and a homologous disease resistance gene, Gpa2, showed that PVX recognition localized to the C-terminal half of the LRR domain. However, inappropriate pairings of LRR and ARC2 domains resulted in autoactive molecules. Thus, the ARC2 domain is required to condition an autoinhibited state in the absence of elicitor as well as for the subsequent elicitor-induced activation. Our data suggest that the ARC region, through its interaction with the LRR, translates elicitor-induced modulations of the C terminus into a signal initiation event. Furthermore, we demonstrate that physical disruption of the LRR-ARC interaction is not required for signal initiation. We propose instead that this activity can lead to multiple rounds of elicitor recognition, providing a means of signal amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号