首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.  相似文献   

2.
Exposure of mammalian cells to UV irradiation leads to activation of the c-Jun NH(2)-terminal protein kinase (JNK) pathway, which is associated with cell apoptosis. However, the molecular mechanism for JNK activation by UV exposure is not fully understood. We show here an essential role of a multisubstrate adapter, Gab1, in this signaling cascade. Gab1-deficient mouse fibroblast cells were defective in induction of JNK activity by UV exposure or heat shock, and this defect was rescued by reintroduction of Gab1 into Gab1(-/-) cells. Consistently, Gab1(-/-) cells displayed reduced caspase 3 induction and apoptotic cell death in response to UV irradiation. Gab1 was constitutively complexed with JNK and became tyrosine phosphorylated in UV-irradiated cells. Genetic and pharmaceutical analyses suggest the involvement of c-Met and the Src family tyrosine kinases in mediating UV-induced Gab1 phosphorylation as well as JNK activation. In aggregate, these observations identify a new function of Gab1 in the response of mammalian cells to UV light.  相似文献   

3.
We have previously demonstrated that phosphatidylinositol 3-kinase (PI3-kinase) is necessary and sufficient to account for epidermal growth factor (EGF)-induced mitogenesis in rat primary hepatocytes. A cytosolic Gab2-containing complex accounts for >80% of the total EGF-induced PI3-kinase activity (Kong, M., Mounier, C., Wu, J., and Posner, B. I. (2000) J. Biol. Chem. 275, 36035-36042), suggesting a key role for Gab2 in EGF-induced mitogenesis. Here, we demonstrate that PP1, a selective inhibitor of Src family kinases, blocks the EGF-induced Gab2 tyrosine phosphorylation without inhibiting EGF-induced phosphorylation of the EGF receptor, ErbB3, or Shc. We also show that Gab2 phosphorylation is increased in Csk knockout cells in which Src family kinases are constitutively activated. Furthermore, PP1 blocks Gab2-associated downstream events including EGF-induced PI3-kinase activation, Akt phosphorylation, and DNA synthesis. We demonstrate that Gab2 and Src are constitutively associated. Since this association involves the proline-rich sequences of Gab2, it probably involves the Src homology 3 domain of Src kinase. Mutation of the proline-rich sequences in Gab2 prevented EGF-induced Gab2 phosphorylation, PI3-kinase/Akt activation, and DNA synthesis, demonstrating that Gab2 phosphorylation is critical for EGF-induced mitogenesis and is not complemented by ErbB3 or Shc phosphorylation. We also found that overexpression of a Gab2 mutant lacking SHP2 binding sites increased EGF-induced Gab2 phosphorylation and the activation of PI3-kinase but blocked activation of MAPK. In addition, we demonstrated that the Src-induced response was down-regulated by Gab2-associated SHP2. In summary, our results have defined the role for Src activation in EGF-induced hepatic mitogenesis through the phosphorylation of Gab2 and the activation of the PI3-kinase cascade.  相似文献   

4.
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.  相似文献   

5.
6.
Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation.  相似文献   

7.
Tyrosine phosphorylation plays an important role in controlling cellular growth, differentiation and function. Abnormal regulation of tyrosine phosphorylation can result in human diseases such as cancer. A major challenge of signal transduction research is to determine how the initial activation of protein-tyrosine kinases (PTKs) by extracellular stimuli triggers multiple downstream signaling cascades, which ultimately elicit diverse cellular responses. Recent studies reveal that members of the Gab/Dos subfamily of scaffolding adaptor proteins (hereafter, "Gab proteins") play a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. Here, we review the structure, mechanism of action and function of these interesting molecules in normal biology and disease.  相似文献   

8.
9.
10.
Granulocyte colony-stimulating factor (G-CSF), the major cytokine regulator of neutrophilic granulopoiesis, stimulates both the proliferation and differentiation of myeloid precursors. A variety of signaling proteins have been identified as mediators of G-CSF signaling, but understanding of their specific interactions and organization into signaling pathways for particular cellular effects is incomplete. The present study examined the role of the scaffolding protein Grb2-associated binding protein-2 (Gab2) in G-CSF signaling. We found that a chemical inhibitor of Janus kinases inhibited G-CSF-stimulated Gab2 phosphorylation. Transfection with Jak2 antisense and dominant negative constructs also inhibited Gab2 phosphorylation in response to G-CSF. In addition, G-CSF enhanced the association of Jak2 with Gab2. In vitro, activated Jak2 directly phosphorylated specific Gab2 tyrosine residues. Mutagenesis studies revealed that Gab2 tyrosine 643 (Y643) was a major target of Jak2 in vitro, and a key residue for Jak2-dependent phosphorylation in intact cells. Mutation of Gab2 Y643 inhibited G-CSF-stimulated Erk1/2 activation and Shp2 binding to Gab2. Loss of Y643 also inhibited Gab2-mediated G-CSF-stimulated cell proliferation. Together, these results identify a novel signaling pathway involving Jak2-dependent Gab2 phosphorylation leading to Erk1/2 activation and cell proliferation in response to G-CSF.  相似文献   

11.
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.  相似文献   

12.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

13.
Gab1蛋白属于接头蛋白Gab家族,该家族蛋白因能与生长因子受体结合蛋白2(Grb2)相结合而得名。作为接头蛋白,Gab1蛋白能被多种受体酪氨酸激酶或非受体酪氨酸激酶激活,接受胞外多种生长因子、细胞因子和一些T/B细胞抗原受体的刺激,介导PI3K/Akt和Ras/MAPK等多条信号转导途径,具有促进细胞生长、迁移、调节免疫等多种生物学功能,与糖尿病、肿瘤、心血管疾病等的发生发展密切相关。  相似文献   

14.
Mona/Gads is a Grb2-related, Src homology 3 (SH3) and SH2 domain-containing adapter protein whose expression is restricted to cells of hematopoietic lineage (i.e., monocytes and T lymphocytes). During monocyte/macrophage differentiation, Mona is induced and interacts with the macrophage colony-stimulating factor receptor, M-CSFR (also called Fms), suggesting that Mona could be involved in developmental signaling downstream of the M-CSFR by recruiting additional signaling proteins to the activated receptor. Our present results identify Mona as a specific partner protein for the DOS/Gab family member Gab3 in monocytic/macrophage development. Mona does not interact with Gab2; however, Gab3 also forms a complex with the Mona-related adapter Grb2. Glutathione S-transferase pull-down experiments demonstrate that the Mona and Gab3 interaction utilizes the carboxy-terminal SH3 domain of Mona and the atypical proline-rich domain of Gab3. Mona is known to interact with the phosphorylated Y697 site of the M-CSFR. The M-CSFR mutation Y697F exhibited qualitative and quantitative abnormalities in receptor and Gab3 tyrosine phosphorylation, and Mona induction was greatly reduced. The Y807F M-CSFR mutation is defective in differentiation signaling, but not growth signaling, and also fails to induce Mona protein expression. During M-CSF-stimulated macrophage differentiation of mouse bone marrow cells, Mona and Gab3 expression is coinduced, these proteins interact, and Mona engages in multimolecular complexes. These data suggest that association of Mona and Gab3 plays a specific role in mediating the M-CSFR differentiation signal.  相似文献   

15.
Src family protein-tyrosine kinase activity is suppressed by two intramolecular interactions. These involve binding of the SH2 domain to the phosphorylated C-terminal tail and association of the SH3 domain with a polyproline type II helix formed by the SH2-kinase linker. Here we show that SH3-dependent activation of the Src family member Hck by HIV-1 Nef binding or by SH2-kinase linker mutation does not affect tail tyrosine phosphorylation in fibroblasts. Surprisingly, replacement of the wild type Hck tail with a high-affinity SH2 domain-binding sequence did not affect Hck activation or downstream signaling by these SH3-dependent mechanisms, suggesting that activation through SH3 occurs without SH2-tail dissociation. These results identify SH3-linker interaction as an independent mode of Hck kinase regulation in vivo and suggest that different mechanisms of Src kinase activation may generate distinct output signals because of differences in SH2 or SH3 domain accessibility.  相似文献   

16.
Middle T antigen (PymT) is the principal transforming component of polyomavirus, and rapidly induces hemangiomas in neonatal mice. PymT, a membrane-associated scaffold, recruits and activates Src family tyrosine kinases, and, once tyrosine phosphorylated, binds proteins with PTB and SH2 domains such as ShcA, phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma-1 (PLCgamma-1). To explore the pathways required for endothelial transformation in vivo, we introduced PymT mutant forms into mice. PymT variants unable to bind PI3K and PLCgamma-1 directly induced hemangiomas similarly to wild type, but a mutant unable to bind ShcA was transformation compromised. Requirement for a ShcA PTB domain- binding site was suppressed by replacing this motif in PymT with YXN sequences, which bind the Grb2 SH2 domain upon phosphorylation. Surprisingly, PymT recruitment of ShcA and Grb2 correlated with PI3K activation. PymT mimics activated receptor tyrosine kinases by forming a ShcA-Grb2-Gab1 complex, thus inducing Gab1 tyrosine phosphorylation, which itself is associated with PI3K. Therefore, PymT activation of ShcA-Grb2 signaling is critical for endothelial transformation, and PymT can stimulate Grb2 signaling to both the MAP kinase and PI3K pathways.  相似文献   

17.
Interleukin (IL)-2, a critical cytokine with indispensable functions in regulating lymphoid homeostasis, induces the activation of several biochemical pathways. Precisely how these pathways are linked and how they relate to the biological action of IL-2 is incompletely understood. We previously identified SHP-2 (Src homology 2 domain containing phosphatase 2) as an important intermediate in IL-2-dependent MAPK activation and showed its association with a 98-kDa phosphoprotein in response to IL-2. Here, we demonstrate that Gab2, a recently identified adapter molecule, is the major SHP-2 and phosphatidylinositol 3'-kinase-associated 98-kDa protein in normal, IL-2-activated lymphocytes. We further demonstrate that phosphorylation of both Gab2 and SHP-2 is largely dependent upon tyrosine 338 of the IL-2 receptor beta chain. Gab2 can be a substrate of all the three major classes of non-receptor tyrosine kinases associated with the IL-2R, but in terms of IL-2 signaling, JAK3 but not Lck or Syk is essential for Gab2 phosphorylation. We also demonstrate that only IL-2 and IL-15, but not other gammac cytokines induce Gab2 phosphorylation; the ability to phosphorylate Gab2 correlates with Shc phosphorylation and ERK1/ERK2 activation. Finally, we also show that Gab2 levels are regulated by T cell activation, and resting T cells express little Gab2. Therefore, up-regulation and activation of Gab2 may be important in linking the IL-2 receptor to activation of MAPK and may be an important means of achieving specificity in cytokine signaling.  相似文献   

18.
Type III receptor tyrosine kinases (RTKs), FLT3 and c-Kit play important roles in a variety of cellular processes. A number of SH2-domain containing proteins interact with FLT3 and c-Kit and regulate downstream signaling. The SH2-domain containing non-receptor protein tyrosine kinase CSK is mainly studied in the context of regulating Src family kinases. Here we present an additional role of this kinase in RTK signaling. We show that CSK interacts with FLT3 and c-Kit in a phosphorylation dependent manner. This interaction is facilitated through the SH2-domain of CSK. Under basal conditions CSK is mainly localized throughout the cytosolic compartment but upon ligand stimulation it is recruited to the inner side of cell membrane. CSK association did not alter receptor ubiquitination or phosphorylation but disrupted downstream signaling. Selective depletion of CSK using siRNA, or inhibition with CSK inhibitor, led to increased phosphorylation of Akt and Erk, but not p38, upon FLT3 ligand (FL) stimulation. Stem cell factor (SCF)-mediated Akt and Erk activation was also elevated by CSK inhibition. However, siRNA mediated CSK knockdown increased SCF stimulated Akt phosphorylation but decreased Erk phosphorylation. CSK depletion also significantly increased both FL- and SCF-induced SHC, Gab2 and SHP2 phosphorylation. Furthermore, CSK depletion contributed to oncogenic FLT3- and c-Kit-mediated cell proliferation, but not to cell survival. Thus, the results indicate that CSK association with type III RTKs, FLT3 and c-Kit can have differential impact on receptor downstream signaling.  相似文献   

19.
The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis.  相似文献   

20.
Dok, a 62-kDa Ras GTPase-activating protein (rasGAP)-associated phosphotyrosyl protein, is thought to act as a multiple docking protein downstream of receptor or non-receptor tyrosine kinases. Cell adhesion to extracellular matrix proteins induced marked tyrosine phosphorylation of Dok. This adhesion-dependent phosphorylation of Dok was mediated, at least in part, by Src family tyrosine kinases. The maximal insulin-induced tyrosine phosphorylation of Dok required a Src family kinase. A mutant Dok (DokDeltaPH) that lacked its pleckstrin homology domain failed to undergo tyrosine phosphorylation in response to cell adhesion or insulin. Furthermore, unlike the wild-type protein, DokDeltaPH did not localize to subcellular membrane components. Insulin promoted the association of tyrosine-phosphorylated Dok with the adapter protein NCK and rasGAP. In contrast, a mutant Dok (DokY361F), in which Tyr361 was replaced by phenylalanine, failed to bind NCK but partially retained the ability to bind rasGAP in response to insulin. Overexpression of wild-type Dok, but not that of DokDeltaPH or DokY361F, enhanced the cell migratory response to insulin without affecting insulin activation of mitogen-activated protein kinase. These results identify Dok as a signal transducer that potentially links, through its interaction with NCK or rasGAP, cell adhesion and insulin receptors to the machinery that controls cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号